Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \tan^{- 1} x\]
\[ \Rightarrow dy = \left( \tan^{- 1} x \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( \tan^{- 1} x \right)dx\]
\[ \Rightarrow y = \tan^{- 1} x\int1 dx - \int\left[ \frac{d}{dx}\left( \tan^{- 1} x \right)\int1 dx \right]dx\]
\[ \Rightarrow y = x \tan^{- 1} x - \int\frac{x}{1 + x^2}dx\]
\[ \Rightarrow y = x \tan^{- 1} x - \frac{1}{2}\int\frac{2x}{1 + x^2}dx\]
\[ \Rightarrow y = x \tan^{- 1} x - \frac{1}{2}\log\left| 1 + x^2 \right| + C\]
\[\text{ So, } y = x \tan^{- 1} x - \frac{1}{2}\log\left| 1 + x^2 \right| +\text{C is defined for all }x \in R.\]
\[\text{ Hence, } y = x \tan^{- 1} x - \frac{1}{2}\log\left| 1 + x^2 \right| +\text{C is the solution to the given differential equation.}\]
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
(ey + 1) cos x dx + ey sin x dy = 0
dy + (x + 1) (y + 1) dx = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
2xy dx + (x2 + 2y2) dy = 0
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Solve the following differential equation.
`dy/dx = x^2 y + y`
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
The solution of `dy/dx + x^2/y^2 = 0` is ______
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: