मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

For each of the following differential equations find the particular solution. (x − y2 x)dx − (y + x2 y) dy = 0, when x = 2, y = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0

बेरीज

उत्तर

(x − y2 x)dx − (y + x2 y) dy = 0, when x = 2, y = 0

∴ x(1- y2) dx = y(1 + x2 ) dy

∴ `(xdx)/(1+x^2) = (ydy)/(1-y^2)`

Integrating on both sides, we get

`int( 2x)/(1+x^2) dx = int(2y)/(1-y^2 )dy`

∴ `int( 2x)/(1+x^2) dx = - int(-2y)/(1-y^2 )dy`

∴ `log | 1 + x^2| = -log| 1-y^2| + log |c|`

∴ `log |1 + x^2 | = log |c /(1-y^2)|`

∴  (1 + x 2) ( 1 - y2 ) = c  …(i)

When x = 2, y = 0, we have

(1 + 4) (1 - 0) = c

∴  c = 5

Substituting c = 5 in (i),we get

(1 + x2) ( 1-y2 ) = 5,

which is the required particular solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Exercise 8.3 [पृष्ठ १६५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Exercise 8.3 | Q 2.1 | पृष्ठ १६५

संबंधित प्रश्‍न

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Solve the differential equation `"dy"/"dx" + 2xy` = y


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×