Advertisements
Advertisements
प्रश्न
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
उत्तर
(x − y2 x)dx − (y + x2 y) dy = 0, when x = 2, y = 0
∴ x(1- y2) dx = y(1 + x2 ) dy
∴ `(xdx)/(1+x^2) = (ydy)/(1-y^2)`
Integrating on both sides, we get
`int( 2x)/(1+x^2) dx = int(2y)/(1-y^2 )dy`
∴ `int( 2x)/(1+x^2) dx = - int(-2y)/(1-y^2 )dy`
∴ `log | 1 + x^2| = -log| 1-y^2| + log |c|`
∴ `log |1 + x^2 | = log |c /(1-y^2)|`
∴ (1 + x 2) ( 1 - y2 ) = c …(i)
When x = 2, y = 0, we have
(1 + 4) (1 - 0) = c
∴ c = 5
Substituting c = 5 in (i),we get
(1 + x2) ( 1-y2 ) = 5,
which is the required particular solution.
APPEARS IN
संबंधित प्रश्न
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Solve the differential equation `"dy"/"dx" + 2xy` = y
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.