मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following differential equation. xy dydx=x2+2y2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`

बेरीज

उत्तर

`xy  dy/dx = x^2 + 2y^2`

∴ `dy/dx = (x^2 + 2y^2)/(xy) …(i)`

Put y = tx  ...(ii)

Differentiating w.r.t. x, we get

`dy/dx = t + x dt/dx`  ...(iii)

Substituting (ii) and (iii) in (i), we get

`t +x dt/dx = (x^2 + 2t^2 x^2)/(x(tx))`

∴`t +x dt/dx = (x^2 (1 + 2t^2))/(x^2t)`

∴ `x dt/dx = (1 + 2t^2)/t  - t = (1+t^2)/t`

∴ `t / (1+t^2) dt = 1/xdx`

Integrating on both sides, we get

`1/2 int (2t)/(1+t^2) dt = int dx/x`

∴ `1/2 log |1+ t^2| = log|x| + log |c_1|`

∴ log |1 + t2 | = 2 log |x| + 2log |c1|

= log |x2| + log |c|    …[logc12 = log c]

∴ log |1 + t2| = log |cx 2|

∴ 1 + t2 = cx2

∴ `1+ y^2/x^2 = cx^2`

∴ x2 + y2 = cx4

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Exercise 8.4 [पृष्ठ १६७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Exercise 8.4 | Q 1.6 | पृष्ठ १६७

संबंधित प्रश्‍न

Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Solve

`dy/dx + 2/ x y = x^2`


y2 dx + (xy + x2)dy = 0


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×