मराठी

D Y D X = Y X − √ Y 2 X 2 − 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

उत्तर

We have,
\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = v - \sqrt{v^2 - 1}\]
\[ \Rightarrow x\frac{dv}{dx} = - \sqrt{v^2 - 1}\]
\[ \Rightarrow \frac{1}{\sqrt{v^2 - 1}}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{\sqrt{v^2 - 1}}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| v + \sqrt{v^2 - 1} \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \left( v + \sqrt{v^2 - 1} \right)x \right| = \log C\]
\[ \Rightarrow \left( v + \sqrt{v^2 - 1} \right)x = C\]
\[\text{ Putting }v = \frac{y}{x}, \text{ we get }\]
\[ \Rightarrow \left( \frac{y}{x} + \sqrt{\frac{y^2}{x^2} - 1} \right)x = C\]
\[\text{ Hence, }y + \sqrt{y^2 - x^2} = C \text{ is the required solution }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 17 | पृष्ठ ८३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


xy dy = (y − 1) (x + 1) dx


\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


\[\frac{dy}{dx} = \sec\left( x + y \right)\]

Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The differential equation satisfied by ax2 + by2 = 1 is


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


y dx – x dy + log x dx = 0


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the differential equation xdx + 2ydy = 0


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×