मराठी

If 1, `Omega` and `Omega^2` Are the Cube Roots of Unity, Prove `(A + B Omega + C Omega^2)/(C + S Omega + B Omega^2) = Omega^2` - Mathematics

Advertisements
Advertisements

प्रश्न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`

उत्तर

Taking LHS

`(a + b omega +  c omega^2)/(c + a omega +  b omega^2)`

`= (omega (a + b omega + c omega^2))/(omega(c + a omega + b omega^2))`

`= (a omega +  b omega^2 +  c omega^2)/(omega(c + a omega +  b omega^2) )= (a omega +  b omega^2 + c)/(omega(c + a omega + b omega^2))`

`= 1/omega xx omega^2/omega^2`

`=  omega^2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


y2 dx + (x2 − xy + y2) dy = 0


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Solve the differential equation:

`e^(dy/dx) = x`


Solve:

(x + y) dy = a2 dx


Solve

`dy/dx + 2/ x y = x^2`


`xy dy/dx  = x^2 + 2y^2`


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solve the differential equation

`y (dy)/(dx) + x` = 0


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×