Advertisements
Advertisements
प्रश्न
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
उत्तर
\[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\]
\[ \Rightarrow \frac{d y}{d x} = - \frac{\sqrt{1 + x^2 + y^2 + x^2 y^2}}{xy}\]
\[ \Rightarrow \frac{d y}{d x} = - \frac{\sqrt{\left( 1 + x^2 \right) + y^2 \left( 1 + x^2 \right)}}{xy}\]
\[ \Rightarrow \frac{d y}{d x} = - \frac{\sqrt{\left( 1 + x^2 \right)\left( 1 + y^2 \right)}}{xy}\]
\[ \Rightarrow \frac{y}{\sqrt{1 + y^2}}dy = - \frac{\sqrt{1 + x^2}}{x}dx\]
\[ \Rightarrow \left( 1 + y^2 \right)^{- \frac{1}{2}} ydy = - \frac{\sqrt{1 + x^2}}{x}dx\]
Integrating both sides, we get
\[\frac{1}{2}\int \left( 1 + y^2 \right)^{- \frac{1}{2}} 2ydy = - \int\frac{\sqrt{1 + x^2}}{x}dx\]
\[ \Rightarrow \sqrt{1 + y^2} = - \int\frac{\sqrt{1 + x^2}}{x}dx . . . . . \left( 1 \right) \left[ \int \left[ f\left( x \right) \right]^n f'\left( x \right)dx = \frac{\left[ f\left( x \right) \right]^{n + 1}}{n + 1} + C \right]\]
\[\text { Let} I_1 = \int\frac{\sqrt{1 + x^2}}{x}dx\]
Put x = tanθ
\[\Rightarrow\] dx = sec2θdθ
\[\therefore I_1 = \int\frac{\sqrt{1 + \tan^2 \theta}}{\tan\theta} \sec^2 \theta d\theta\]
\[ = \int\frac{\sqrt{\sec^2 \theta}}{\tan\theta} \sec^2 \theta d\theta\]
\[ = \int\frac{\sec^3 \theta}{\tan\theta}d\theta\]
\[ = \int\frac{1}{\sin\theta \cos^2 \theta}d\theta\]
\[ = \int\frac{\sin^2 \theta + \cos^2 \theta}{\sin\theta \cos^2 \theta}d\theta\]
\[ = \int\tan\theta\sec\theta d\theta + \int\cos ec\theta d\theta\]
\[ = \sec\theta + \log\left( \cos ec\theta - \cot\theta \right)\]
\[ = \sqrt{1 + \tan^2 \theta} + \log\left( \sqrt{1 + \frac{1}{\tan^2 \theta}} - \frac{1}{\tan\theta} \right)\]
\[\therefore I_1 = \sqrt{1 + x^2} + \log\left( \sqrt{1 + \frac{1}{x^2}} - \frac{1}{x} \right) + C . . . . . \left( 2 \right)\]
From (1) and (2), we have
\[\sqrt{1 + y^2} = \sqrt{1 + x^2} + \log\left( \sqrt{1 + \frac{1}{x^2}} - \frac{1}{x} \right) + C\]
\[ \Rightarrow \sqrt{1 + y^2} = \sqrt{1 + x^2} + \log\left( \frac{\sqrt{1 + x^2} - 1}{x} \right) + C\]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
C' (x) = 2 + 0.15 x ; C(0) = 100
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The solution of the differential equation y1 y3 = y22 is
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
Solve the following differential equation.
`dy/dx + 2xy = x`
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.