मराठी

Solve the Following Differential Equation : ( √ 1 + X 2 + Y 2 + X 2 Y 2 ) D X + X Y D Y = 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].

उत्तर

\[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\]

\[ \Rightarrow \frac{d y}{d x} = - \frac{\sqrt{1 + x^2 + y^2 + x^2 y^2}}{xy}\]

\[ \Rightarrow \frac{d y}{d x} = - \frac{\sqrt{\left( 1 + x^2 \right) + y^2 \left( 1 + x^2 \right)}}{xy}\]

\[ \Rightarrow \frac{d y}{d x} = - \frac{\sqrt{\left( 1 + x^2 \right)\left( 1 + y^2 \right)}}{xy}\]

\[ \Rightarrow \frac{y}{\sqrt{1 + y^2}}dy = - \frac{\sqrt{1 + x^2}}{x}dx\]

\[ \Rightarrow \left( 1 + y^2 \right)^{- \frac{1}{2}} ydy = - \frac{\sqrt{1 + x^2}}{x}dx\]

Integrating both sides, we get

\[\frac{1}{2}\int \left( 1 + y^2 \right)^{- \frac{1}{2}} 2ydy = - \int\frac{\sqrt{1 + x^2}}{x}dx\]

\[ \Rightarrow \sqrt{1 + y^2} = - \int\frac{\sqrt{1 + x^2}}{x}dx . . . . . \left( 1 \right) \left[ \int \left[ f\left( x \right) \right]^n f'\left( x \right)dx = \frac{\left[ f\left( x \right) \right]^{n + 1}}{n + 1} + C \right]\]

\[\text { Let} I_1 = \int\frac{\sqrt{1 + x^2}}{x}dx\]

Put x = tanθ

\[\Rightarrow\] dx = sec2θdθ

\[\therefore I_1 = \int\frac{\sqrt{1 + \tan^2 \theta}}{\tan\theta} \sec^2 \theta d\theta\]

\[ = \int\frac{\sqrt{\sec^2 \theta}}{\tan\theta} \sec^2 \theta d\theta\]

\[ = \int\frac{\sec^3 \theta}{\tan\theta}d\theta\]

\[ = \int\frac{1}{\sin\theta \cos^2 \theta}d\theta\]

\[ = \int\frac{\sin^2 \theta + \cos^2 \theta}{\sin\theta \cos^2 \theta}d\theta\]

\[ = \int\tan\theta\sec\theta d\theta + \int\cos ec\theta d\theta\]

\[ = \sec\theta + \log\left( \cos ec\theta - \cot\theta \right)\]

\[ = \sqrt{1 + \tan^2 \theta} + \log\left( \sqrt{1 + \frac{1}{\tan^2 \theta}} - \frac{1}{\tan\theta} \right)\]

\[\therefore I_1 = \sqrt{1 + x^2} + \log\left( \sqrt{1 + \frac{1}{x^2}} - \frac{1}{x} \right) + C . . . . . \left( 2 \right)\]

From (1) and (2), we have

\[\sqrt{1 + y^2} = \sqrt{1 + x^2} + \log\left( \sqrt{1 + \frac{1}{x^2}} - \frac{1}{x} \right) + C\]

\[ \Rightarrow \sqrt{1 + y^2} = \sqrt{1 + x^2} + \log\left( \frac{\sqrt{1 + x^2} - 1}{x} \right) + C\]

This is the solution of the given differential equation.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Foreign Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

C' (x) = 2 + 0.15 x ; C(0) = 100


dy + (x + 1) (y + 1) dx = 0


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The solution of the differential equation y1 y3 = y22 is


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Solve the following differential equation.

`dy/dx + 2xy = x`


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×