Advertisements
Advertisements
प्रश्न
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
उत्तर
\[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\]
\[ \Rightarrow \frac{d y}{d x} = - \frac{\sqrt{1 + x^2 + y^2 + x^2 y^2}}{xy}\]
\[ \Rightarrow \frac{d y}{d x} = - \frac{\sqrt{\left( 1 + x^2 \right) + y^2 \left( 1 + x^2 \right)}}{xy}\]
\[ \Rightarrow \frac{d y}{d x} = - \frac{\sqrt{\left( 1 + x^2 \right)\left( 1 + y^2 \right)}}{xy}\]
\[ \Rightarrow \frac{y}{\sqrt{1 + y^2}}dy = - \frac{\sqrt{1 + x^2}}{x}dx\]
\[ \Rightarrow \left( 1 + y^2 \right)^{- \frac{1}{2}} ydy = - \frac{\sqrt{1 + x^2}}{x}dx\]
Integrating both sides, we get
\[\frac{1}{2}\int \left( 1 + y^2 \right)^{- \frac{1}{2}} 2ydy = - \int\frac{\sqrt{1 + x^2}}{x}dx\]
\[ \Rightarrow \sqrt{1 + y^2} = - \int\frac{\sqrt{1 + x^2}}{x}dx . . . . . \left( 1 \right) \left[ \int \left[ f\left( x \right) \right]^n f'\left( x \right)dx = \frac{\left[ f\left( x \right) \right]^{n + 1}}{n + 1} + C \right]\]
\[\text { Let} I_1 = \int\frac{\sqrt{1 + x^2}}{x}dx\]
Put x = tanθ
\[\Rightarrow\] dx = sec2θdθ
\[\therefore I_1 = \int\frac{\sqrt{1 + \tan^2 \theta}}{\tan\theta} \sec^2 \theta d\theta\]
\[ = \int\frac{\sqrt{\sec^2 \theta}}{\tan\theta} \sec^2 \theta d\theta\]
\[ = \int\frac{\sec^3 \theta}{\tan\theta}d\theta\]
\[ = \int\frac{1}{\sin\theta \cos^2 \theta}d\theta\]
\[ = \int\frac{\sin^2 \theta + \cos^2 \theta}{\sin\theta \cos^2 \theta}d\theta\]
\[ = \int\tan\theta\sec\theta d\theta + \int\cos ec\theta d\theta\]
\[ = \sec\theta + \log\left( \cos ec\theta - \cot\theta \right)\]
\[ = \sqrt{1 + \tan^2 \theta} + \log\left( \sqrt{1 + \frac{1}{\tan^2 \theta}} - \frac{1}{\tan\theta} \right)\]
\[\therefore I_1 = \sqrt{1 + x^2} + \log\left( \sqrt{1 + \frac{1}{x^2}} - \frac{1}{x} \right) + C . . . . . \left( 2 \right)\]
From (1) and (2), we have
\[\sqrt{1 + y^2} = \sqrt{1 + x^2} + \log\left( \sqrt{1 + \frac{1}{x^2}} - \frac{1}{x} \right) + C\]
\[ \Rightarrow \sqrt{1 + y^2} = \sqrt{1 + x^2} + \log\left( \frac{\sqrt{1 + x^2} - 1}{x} \right) + C\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
y ex/y dx = (xex/y + y) dy
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
The solution of `dy/ dx` = 1 is ______
Solve: `("d"y)/("d"x) + 2/xy` = x2
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
Solve the differential equation `"dy"/"dx" + 2xy` = y