हिंदी

Solve the Following Differential Equation : ( √ 1 + X 2 + Y 2 + X 2 Y 2 ) D X + X Y D Y = 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].

उत्तर

\[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\]

\[ \Rightarrow \frac{d y}{d x} = - \frac{\sqrt{1 + x^2 + y^2 + x^2 y^2}}{xy}\]

\[ \Rightarrow \frac{d y}{d x} = - \frac{\sqrt{\left( 1 + x^2 \right) + y^2 \left( 1 + x^2 \right)}}{xy}\]

\[ \Rightarrow \frac{d y}{d x} = - \frac{\sqrt{\left( 1 + x^2 \right)\left( 1 + y^2 \right)}}{xy}\]

\[ \Rightarrow \frac{y}{\sqrt{1 + y^2}}dy = - \frac{\sqrt{1 + x^2}}{x}dx\]

\[ \Rightarrow \left( 1 + y^2 \right)^{- \frac{1}{2}} ydy = - \frac{\sqrt{1 + x^2}}{x}dx\]

Integrating both sides, we get

\[\frac{1}{2}\int \left( 1 + y^2 \right)^{- \frac{1}{2}} 2ydy = - \int\frac{\sqrt{1 + x^2}}{x}dx\]

\[ \Rightarrow \sqrt{1 + y^2} = - \int\frac{\sqrt{1 + x^2}}{x}dx . . . . . \left( 1 \right) \left[ \int \left[ f\left( x \right) \right]^n f'\left( x \right)dx = \frac{\left[ f\left( x \right) \right]^{n + 1}}{n + 1} + C \right]\]

\[\text { Let} I_1 = \int\frac{\sqrt{1 + x^2}}{x}dx\]

Put x = tanθ

\[\Rightarrow\] dx = sec2θdθ

\[\therefore I_1 = \int\frac{\sqrt{1 + \tan^2 \theta}}{\tan\theta} \sec^2 \theta d\theta\]

\[ = \int\frac{\sqrt{\sec^2 \theta}}{\tan\theta} \sec^2 \theta d\theta\]

\[ = \int\frac{\sec^3 \theta}{\tan\theta}d\theta\]

\[ = \int\frac{1}{\sin\theta \cos^2 \theta}d\theta\]

\[ = \int\frac{\sin^2 \theta + \cos^2 \theta}{\sin\theta \cos^2 \theta}d\theta\]

\[ = \int\tan\theta\sec\theta d\theta + \int\cos ec\theta d\theta\]

\[ = \sec\theta + \log\left( \cos ec\theta - \cot\theta \right)\]

\[ = \sqrt{1 + \tan^2 \theta} + \log\left( \sqrt{1 + \frac{1}{\tan^2 \theta}} - \frac{1}{\tan\theta} \right)\]

\[\therefore I_1 = \sqrt{1 + x^2} + \log\left( \sqrt{1 + \frac{1}{x^2}} - \frac{1}{x} \right) + C . . . . . \left( 2 \right)\]

From (1) and (2), we have

\[\sqrt{1 + y^2} = \sqrt{1 + x^2} + \log\left( \sqrt{1 + \frac{1}{x^2}} - \frac{1}{x} \right) + C\]

\[ \Rightarrow \sqrt{1 + y^2} = \sqrt{1 + x^2} + \log\left( \frac{\sqrt{1 + x^2} - 1}{x} \right) + C\]

This is the solution of the given differential equation.
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Foreign Set 2

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

\[\frac{dy}{dx} = x \log x\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[x\frac{dy}{dx} + \cot y = 0\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

y ex/y dx = (xex/y + y) dy


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


The solution of `dy/ dx` = 1 is ______


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


Solve the differential equation `"dy"/"dx" + 2xy` = y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×