हिंदी

[ X √ X 2 + Y 2 − Y 2 ] D X + X Y D Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]
योग

उत्तर

We have, 
\[\left[ x\sqrt{x^2 + y^2} - y^2 \right]dx + xy\ dy = 0\]
\[\frac{dy}{dx} = \frac{y^2 - x\sqrt{x^2 + y^2}}{xy}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{v^2 x^2 - x\sqrt{x^2 + v^2 x^2}}{v x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{v^2 - \sqrt{1 + v^2}}{v}\]
\[ \Rightarrow v + x\frac{dv}{dx} = v - \frac{\sqrt{1 + v^2}}{v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- \sqrt{1 + v^2}}{v}\]
\[ \Rightarrow \frac{v}{\sqrt{1 + v^2}}dv = - \frac{1}{x}dx\]
\[\text{ Putting }1 + v^2 = t,\text{ we get }\]
\[v\ dv = \frac{dt}{2}\]
\[ \therefore \frac{1}{2\sqrt{t}}dt = - \frac{1}{x}dx\]
Integrating both sides, we get 
\[\int \frac{1}{2\sqrt{t}}dt = - \int\frac{1}{x}dx\]
\[ \Rightarrow \sqrt{t} = - \log \left| x \right| + \log C . . . . . (1)\]
Substituting the value of `t` in (1), we get
\[\sqrt{1 + v^2} = \log \left| \frac{C}{x} \right|\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \sqrt{y^2 + x^2} = x \log \left| \frac{C}{x} \right|\]
\[\text{ Hence, }\sqrt{y^2 + x^2} = x \log \left| \frac{C}{x} \right| \text{ is the required solution.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.09 | Q 21 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

xy (y + 1) dy = (x2 + 1) dx


\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


\[\frac{dy}{dx} = \left( x + y \right)^2\]

x2 dy + y (x + y) dx = 0


\[x\frac{dy}{dx} = x + y\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Solve the differential equation

`x + y dy/dx` = x2 + y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×