हिंदी

Show that Y = Ae2x + Be−X is a Solution of the Differential Equation D 2 Y D X 2 − D Y D X − 2 Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]

योग

उत्तर

We have,

\[y = a e^{2x} + b e^{- x}...........(1)\]

Differentiating both sides of equation (1) with respect to

`x,` we get

\[\frac{dy}{dx} = 2a e^{2x} - b e^{- x}..........(2)\]

Differentiating both sides of equation (2) with respect to

`x,` we get

\[\frac{d^2 y}{d x^2} = 4a e^{2x} + b e^{- x} \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 2a e^{2x} - b e^{- x} + 2a e^{2x} + 2b e^{- x} \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \left( 2a e^{2x} - b e^{- x} \right) + 2\left( a e^{2x} + b e^{- x} \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{dy}{dx} + 2y ..........\left[\text{Using equations (1) and (2)} \right]\]

\[\Rightarrow\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.03 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.03 | Q 3 | पृष्ठ २४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[5\frac{dy}{dx} = e^x y^4\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The solution of the differential equation y1 y3 = y22 is


The differential equation satisfied by ax2 + by2 = 1 is


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


`xy dy/dx  = x^2 + 2y^2`


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×