Advertisements
Advertisements
प्रश्न
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
उत्तर
We have,
\[y = a e^{2x} + b e^{- x}...........(1)\]
Differentiating both sides of equation (1) with respect to
`x,` we get
\[\frac{dy}{dx} = 2a e^{2x} - b e^{- x}..........(2)\]
Differentiating both sides of equation (2) with respect to
`x,` we get
\[\frac{d^2 y}{d x^2} = 4a e^{2x} + b e^{- x} \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 2a e^{2x} - b e^{- x} + 2a e^{2x} + 2b e^{- x} \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \left( 2a e^{2x} - b e^{- x} \right) + 2\left( a e^{2x} + b e^{- x} \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{dy}{dx} + 2y ..........\left[\text{Using equations (1) and (2)} \right]\]
\[\Rightarrow\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Verify that y = cx + 2c2 is a solution of the differential equation
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The solution of the differential equation y1 y3 = y22 is
The differential equation satisfied by ax2 + by2 = 1 is
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
`xy dy/dx = x^2 + 2y^2`
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: