Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[5\frac{dy}{dx} = e^x y^4 \]
\[ \Rightarrow \frac{5}{y^4}dy = e^x dx\]
Integrating both sides, we get
\[\int\frac{5}{y^4}dy = \int e^x dx\]
\[ \Rightarrow \frac{- 5}{3 y^3} = e^x + C\]
\[\text{ Hence, }\frac{- 5}{3 y^3} = e^x +\text{ C is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
(x + 2y) dx − (2x − y) dy = 0
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The differential equation satisfied by ax2 + by2 = 1 is
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
The function y = ex is solution ______ of differential equation
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.