हिंदी

Solve the following differential equation. xdx + 2y dx = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation.

xdx + 2y dx = 0

योग

उत्तर

xdx + 2y dy = 0

Integrating on both sides, we get

`int x  dx +2 int y  dy = 0`

∴ `x^2/2 + (2y^2)/2 = c_1`

∴ x2 + 2y2 = c      ...[2c1 = c]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Exercise 8.4 [पृष्ठ १६७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Exercise 8.4 | Q 1.1 | पृष्ठ १६७

संबंधित प्रश्न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


\[\frac{dy}{dx} = \sin^2 y\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

dr + (2r)dθ= 8dθ


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×