हिंदी

For the following differential equation find the particular solution. (x+1)dydx−1=2e−y, when y = 0, x = 1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1

योग

उत्तर

`(x + 1) dy/dx -1 = 2e^(-y)`

∴ `(x + 1) dy /dx = 2/e^y + 1`

∴ `(x + 1) dy /dx = ((2+e^y))/e^y `

∴ `e^y /(2+e^y) dy= dx/(1+x)`

Integrating on both sides, we get

`int e^y/(2+e^y) dy = intdx/(1+x)`

∴ log| 2 + ey| = log |1 + x| + log |c|

∴ log |2 + ey| = log |c(1 + x)|

∴ 2 + ey = c (1 + x)         ...(i)

When y = 0, x = 1, we have

2 + e0 = c (1 + 1)

∴ 2 + 1 = 2c

∴ c = `3/2`

Substituting c = `3/2` in (i), we get

`2 + e^y = 3/ 2 (1 + x)`

∴ 4 + 2ey = 3 + 3x

∴  3x - 2ey - 1 = 0, which is the required particular solution.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Exercise 8.3 [पृष्ठ १६५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Exercise 8.3 | Q 2.2 | पृष्ठ १६५

संबंधित प्रश्न

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

(x2 − y2) dx − 2xy dy = 0


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


The solution of `dy/dx + x^2/y^2 = 0` is ______


y dx – x dy + log x dx = 0


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×