Advertisements
Advertisements
प्रश्न
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
उत्तर
`y(1 + log x) dx/dy - x log x` = 0
∴ `(1 + log x)/(x log x)dx - dy/y` = 0
Integrating both sides, we get
∴ `int (1 + log x)/(x log x)dx - dy/y` = c1 .....(1)
Put x log x = t
Then `[x * d/dx (log x) + (log x) * d/dx (x)]dx` = dt
∴ `[x/x + (log x)(1)]dx` = dt
∴ `(1 + log x)dx` = dt
∴ `int (1 + log x)/(x log x)dx = intdt/t = log |t| = log |x log x|`
∴ From (1), the general solution is
log |x log x| – log |y| = log c, where c1 = log c
∴ log `|(x log x)/y|` = log c
∴ `(x log x)/y` = c
∴ x log x = cy
This is the general solution.
Now, y = `"e"^2`, when x = e
∴ e log e = c.e2
∴ 1 = c.e ...[∵ log e = 1]
∴ c = `1/e`
∴ The particular solution is x log x = `(1/e)y`
∴ y = ex log x.
संबंधित प्रश्न
Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.
Form the differential equation of all parabolas whose axis is the X-axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
For the following differential equation find the particular solution satisfying the given condition:
`(e^y + 1) cos x + e^y sin x. dy/dx = 0, "when" x = pi/6,` y = 0
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
Choose the correct option from the given alternatives:
`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a sin (x + b)
Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
The general solution of `(dy)/(dx)` = e−x is ______.
Select and write the correct alternative from the given option for the question
General solution of `y - x ("d"y)/("d"x)` = 0 is
Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Find the differential equation of the family of all non-horizontal lines in a plane
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
Find the differential equation of the curve represented by xy = aex + be–x + x2
If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
The differential equation of all parabolas whose axis is Y-axis, is ______.
The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.
Form the differential equation of all concentric circles having centre at the origin.
A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.