हिंदी

For the following differential equation find the particular solution satisfying the given condition: y(1+logx)dxdy-xlogx=0,y=e2, when x = e - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e

योग

उत्तर

`y(1 + log x) dx/dy - x log x` = 0

∴ `(1 + log x)/(x log x)dx - dy/y` = 0

Integrating both sides, we get

∴ `int (1 + log x)/(x log x)dx - dy/y` = c1      .....(1)

Put x log x = t

Then `[x * d/dx (log x) + (log x) * d/dx (x)]dx` = dt

∴ `[x/x + (log x)(1)]dx` = dt

∴ `(1 + log x)dx` = dt

∴ `int (1 + log x)/(x log x)dx = intdt/t = log |t| = log |x log x|`

∴ From (1), the general solution is

log |x log x| – log |y| = log c, where c1 = log c

∴ log `|(x log x)/y|` = log c

∴ `(x log x)/y` = c

∴ x log x = cy

This is the general solution.

Now, y = `"e"^2`, when x = e

∴ e log e = c.e2

∴ 1 = c.e     ...[∵ log e = 1]

∴ c = `1/e`

∴ The particular solution is x log x = `(1/e)y`

∴ y = ex log x.

shaalaa.com
Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Exercise 8.3 [पृष्ठ १६५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Exercise 8.3 | Q 2.3 | पृष्ठ १६५
बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Exercise 6.3 | Q 3.3 | पृष्ठ २०१

संबंधित प्रश्न

Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`


Solve the following differential equation:

`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`


Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


For the following differential equation find the particular solution satisfying the given condition:

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.


Choose the correct option from the given alternatives:

`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a sin (x + b)


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.


The general solution of `(dy)/(dx)` = e−x is ______.


Select and write the correct alternative from the given option for the question

General solution of `y - x ("d"y)/("d"x)` = 0 is


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the differential equation of the family of all non-horizontal lines in a plane 


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


Find the differential equation of the curve represented by xy = aex + be–x + x2


If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


Solve the following differential equation:

`xsin(y/x)dy = [ysin(y/x) - x]dx`


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


The differential equation of all parabolas whose axis is Y-axis, is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


Form the differential equation whose general solution is y = a cos 2x + b sin 2x.


Form the differential equation of all concentric circles having centre at the origin.


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×