Advertisements
Advertisements
प्रश्न
Find the differential equation of the curve represented by xy = aex + be–x + x2
उत्तर
Given xy = aex + be–x + x2 ........(1)
Where a and b are aribitrary constant,
Differentiate equation (1) twice successively,
Because we have two arbitray constant.
`x ("d"y)/("d"x) + y(1)` = aex – be–x + 2x .......(2)
`x ("d"^2y)/("d"x^2) + ("d")/("d"x) (1) + ("d"y)/("d"x)` = aex + be–x + 2
`x ("d"^2y)/("d"x^2) + (2"d"y)/("d"x)` = aex + be–x + 2 ......(3)
From (1), we get xy – x2 = aex + be–x ........(4)
Substituting equation (4) in (3), we get
∴ `x ("d"^2y)/("d"x^2) + (2"d"y)/("d"x) - xy + x^2 - 2` = 0 is the required differential equation.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
Ax2 + By2 = 1
Find the differential equation of all circles having radius 9 and centre at point (h, k).
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
cos x . cos y dy − sin x . sin y dx = 0
Choose the correct option from the given alternatives:
The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`
Choose the correct option from the given alternatives:
`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Select and write the correct alternative from the given option for the question
The solution of `("d"y)/("d"x)` = 1 is
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?
The differential equation of all parabolas whose axis is Y-axis, is ______.
The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.