Advertisements
Advertisements
प्रश्न
Find the differential equation of all circles having radius 9 and centre at point (h, k).
उत्तर
Equation of the circle having radius 9 and centre at point (h, k) is
(x - h)2 + (y - k)2 = 81, .....(1)
where h and k are arbitrary constant.
Differentiating (1) w.r.t. x, we get
`2("x - h") * "d"/"dx" ("x - h") + 2 ("y - k") * "d"/"dx" ("y - k") = 0`
∴ (x - h)(1 - 0) + (y - k)`("dy"/"dx" - 0) = 0`
∴ (x - h) + (y - k) `"dy"/"dx" = 0` .....(2)
Differentiating again w.r.t. x, we get
`"d"/"dx" ("x - h") + ("y - k") * "d"/"dx"("dy"/"dx") + "dy"/"dx" * "d"/"dx" ("y - k") = 0`
∴ `(1 - 0) + ("y - k") ("d"^2"y")/"dx"^2 + "dy"/"dx" * ("dy"/"dx" - 0) = 0`
∴ `("y - k") ("d"^2"y")/"dx"^2 + ("dy"/"dx")^2` + 1 = 0
∴ `("y - k") ("d"^2"y")/"dx"^2 = - [("dy"/"dx")^2 + 1]`
∴ `"y - k" = (- ("dy"/"dx")^2 + 1)/(("d"^2"y")/"dx"^2` ....(3)
From (2), x - h = - (y - k)`"dy"/"dx"`
Substituting the value of (x - h) in (1), we get
`("y - k")^2 ("dy"/"dx")^2 + ("y - k")^2 = 81`
∴ `("dy"/"dx")^2 + 1 = 81/("y - k")^2`
∴ `("dy"/"dx")^2 + 1 = (81 * ("d"^2"y")/"dx"^2)/[("dy"/"dx")^2 + 1]^2`
∴ `81 (("d"^2"y")/"dx"^2)^2 = [("dy"/"dx")^2 + 1]^3`
This is the required D.E.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a + `"a"/"x"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`log ("dy"/"dx") = 2"x" + 3"y"`
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
`"y"^2 = "a"("b - x")("b + x")`
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
Solve the following differential equation:
`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
Select and write the correct alternative from the given option for the question
General solution of `y - x ("d"y)/("d"x)` = 0 is
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Form the differential equation of y = (c1 + c2)ex
Find the differential equation from the relation x2 + 4y2 = 4b2
Find the differential equation of the family of all non-horizontal lines in a plane
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.
If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.
The differential equation of the family of circles touching Y-axis at the origin is ______.
The differential equation for a2y = log x + b, is ______.
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.
Solve the differential equation
ex tan y dx + (1 + ex) sec2 y dy = 0
Form the differential equation of all concentric circles having centre at the origin.