Advertisements
Advertisements
प्रश्न
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
उत्तर
`y(1 + log x) = (log x^x) dy/dx`
`y(1 + log x) - (log x^x) dy/dx = 0`
`y(1 + log x)dx/dy - xlogx = 0`
∴ `(1 + log "x")/("x log x")"dx" - "dy"/"y" = 0`
Integrating both sides, we get
∴ `int (1 + log "x")/("x log x")"dx" - "dy"/"y" = "c"_1` .....(1)
Put x log x = t
Then `["x" * "d"/"dx" (log "x") + (log "x") * "d"/"dx" ("x")]"dx" = "dt"`
∴ `["x"/"x" + (log "x")(1)]"dx" = "dt"`
∴ `int (1 + log "x")/("x" log "x")"dx" = int"dt"/"t" = log |"t"| = log |"x" log "x"|`
∴ from (1), the general solution is
log |x log x| - log |y| = log c, where c1 = log c
∴ log `|("x" log "x")/"y"| = log "c"`
∴ `("x" log "x")/"y" = "c"`
∴ x log x = cy
This is the general solution.
Now, y = `"e"^2`, when x = e
∴ e log e = c.e2
∴ 1 = c.e
∴ c = `1/"e"`
∴ the particular solution is x log x = `(1/"e")"y"`
∴ y = ex log x.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y2 = (x + c)3
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.
Find the differential equation of all circles having radius 9 and centre at point (h, k).
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
Solve the following differential equation:
`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`
For the following differential equation find the particular solution satisfying the given condition:
3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.
For the following differential equation find the particular solution satisfying the given condition:
`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Choose the correct option from the given alternatives:
The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.
Choose the correct option from the given alternatives:
`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Solve the following differential equation:
`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
The general solution of `(dy)/(dx)` = e−x is ______.
Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
Form the differential equation of all lines which makes intercept 3 on x-axis.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.
The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.
Solve the differential equation
ex tan y dx + (1 + ex) sec2 y dy = 0