Advertisements
Advertisements
प्रश्न
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
उत्तर
y = `(sin^-1 "x")^2 + "c"` .....(1)
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx" (sin^-1 "x")^2 + 0`
∴ `"dy"/"dx" = 2(sin^-1 "x") * "d"/"dx" (sin^-1 "x")`
`= 2 sin^-1 "x" xx 1/sqrt(1 - "x"^2)`
∴ `sqrt(1 - "x"^2) "dy"/"dx" = 2 sin^-1 "x"`
∴ `(1 - "x"^2) ("dy"/"dx")^2 = 4(sin^-1 "x")^2`
∴ `(1 - "x"^2) ("dy"/"dx")^2 = 4("y - c")` ....[By (1)]
Differentiating again w.r.t. x, we get
`(1 - "x"^2) * "d"/"dx" ("dy"/"dx")^2 + ("dy"/"dx")^2 * "d"/"dx" (1 - "x"^2) = 4 "d"/"dx" ("y - c")`
∴ `(1 - "x"^2) * 2 "dy"/"dx" * ("d"^2"y")/"dx"^2 - 2"x" ("dy"/"dx")^2 = 4 ("dy"/"dx" - 0)`
Cancelling `2 "dy"/"dx"` throughout, we get
`(1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
Hence, y = (sin-1 x)2 + c is a solution of the D.E.
`(1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
Find the differential equation of the ellipse whose major axis is twice its minor axis.
Form the differential equation of all parabolas whose axis is the X-axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
Solve the following differential equation:
`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`
For the following differential equation find the particular solution satisfying the given condition:
3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.
For the following differential equation find the particular solution satisfying the given condition:
`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`
Reduce the following differential equation to the variable separable form and hence solve:
`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
`"y"^2 = "a"("b - x")("b + x")`
In the following example verify that the given function is a solution of the differential equation.
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a sin (x + b)
Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Find the differential equation of family of lines making equal intercepts on coordinate axes
Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Find the differential equation from the relation x2 + 4y2 = 4b2
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be –8x, where A and B are arbitrary constants
Find the differential equation of the curve represented by xy = aex + be–x + x2
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
The differential equation of the family of circles touching Y-axis at the origin is ______.
The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.
Form the differential equation of all concentric circles having centre at the origin.