हिंदी

In the following example verify that the given expression is a solution of the corresponding differential equation: y = abxxdydxdydxa+bx;xd2ydx2+2dydx=0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`

योग

उत्तर

y = `"a" + "b"/"x"`

Differentiating w.r.t. x, we get

`"dy"/"dx" = 0 + "b"(- 1/"x"^2) = - "b"/"x"^2`

∴ `"x"^2 "dy"/"dx" = - "b"`

Differentiating again w.r.t. x, we get

`"x"^2 * "d"/"dx" ("dy"/"dx") + "dy"/"dx" * "d"/"dx" ("x"^2) = 0`

∴ `"x"^2 ("d"^2"y")/"dx"^2 + "dy"/"dx" xx "2x" = 0`

∴ `"x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`

Hence, y = `"a" + "b"/"x"` is a solution of the D.E.

`"x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`

shaalaa.com
Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Exercise 6.3 [पृष्ठ २००]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Exercise 6.3 | Q 1.5 | पृष्ठ २००

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = e−2x (A cos x + B sin x)


Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.


Find the differential equation of all circles having radius 9 and centre at point (h, k).


Solve the following differential equation:

`"sec"^2 "x" * "tan y"  "dx" + "sec"^2 "y" * "tan x"  "dy" = 0` 


Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


Reduce the following differential equation to the variable separable form and hence solve:

`"dy"/"dx" = cos("x + y")`


Reduce the following differential equation to the variable separable form and hence solve:

(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is


The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.


In the following example verify that the given function is a solution of the differential equation.

`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a sin (x + b)


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Select and write the correct alternative from the given option for the question

The solution of `("d"y)/("d"x)` = 1 is


The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is 


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.


Solve the following differential equation:

`xsin(y/x)dy = [ysin(y/x) - x]dx`


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.


The differential equation of the family of circles touching Y-axis at the origin is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Solve the differential equation

ex tan y dx + (1 + ex) sec2 y dy = 0


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×