Advertisements
Advertisements
प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
उत्तर
y = e−2x (A cos x + B sin x)
∴ e2x y = A cos x + B sin x ....(1)
Differentiating twice w.r.t. x, we get
`e^(2x) * dy/dx + y * e^(2x) xx 2 = A(- sin x) + B cos x`
∴ `e^(2x)(dy/dx + 2y) = - A sin x + B cos x`
Differentiating again w.r.t. x, we get
`e^(2x)((d^2y)/dx^2 + 2dy/dx) + (dy/dx + 2y) * e^(2x) xx 2 = - A cos x + B (- sin x)`
∴ `e^(2x)((d^2y)/dx^2 + 2dy/dx + 2dy/dx + 4y) = - (A cos x + B sin x)`
∴ `e^(2x)((d^2y)/dx^2 + 4 dy/dx + 4y) = - e^(2x).y` ....[By (1)]
∴ `(d^2y)/dx^2 + 4 dy/dx + 4y = - y`
∴ `(d^2y)/dx^2 + 4 dy/dx + 5y = 0`
This is the required D.E.
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
Ax2 + By2 = 1
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Find the differential equation of the ellipse whose major axis is twice its minor axis.
Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
For the following differential equation find the particular solution satisfying the given condition:
`(e^y + 1) cos x + e^y sin x. dy/dx = 0, "when" x = pi/6,` y = 0
For the following differential equation find the particular solution satisfying the given condition:
`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`
Reduce the following differential equation to the variable separable form and hence solve:
`"dy"/"dx" = cos("x + y")`
Reduce the following differential equation to the variable separable form and hence solve:
(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
`"y"^2 = "a"("b - x")("b + x")`
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a sin (x + b)
Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.
Solve the following differential equation:
`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Find the particular solution of the following differential equation:
`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Select and write the correct alternative from the given option for the question
General solution of `y - x ("d"y)/("d"x)` = 0 is
Form the differential equation of family of standard circle
Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Find the differential equation of the family of all non-vertical lines in a plane
Find the differential equation of the family of all non-horizontal lines in a plane
Find the differential equation of the curve represented by xy = aex + be–x + x2
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
Form the differential equation of all lines which makes intercept 3 on x-axis.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
The differential equation of all parabolas whose axis is Y-axis, is ______.
The differential equation of the family of circles touching Y-axis at the origin is ______.
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.