हिंदी

Obtain the differential equation by eliminating the arbitrary constants from the following equation: yab - xb + xy2=a(b - x)(b + x) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

`"y"^2 = "a"("b - x")("b + x")`

योग

उत्तर

`"y"^2 = "a"("b - x")("b + x") = "a"("b"^2 - "x"^2)`

Differentiating both sides w.r.t. x, we get

`"2y" "dy"/"dx" = "a" (0 - 2"x") = - 2 "ax"`

∴ `"y" "dy"/"dx" = - "ax"`      ....(1)

Differentiating again w.r.t. x, we get

`"y" * "d"/"dx" ("dy"/"dx")^2+ "dy"/"dx" * "dy"/"dx" = - "a" xx 1`

∴ `"y" ("d"^2"y")/"dx"^2 + ("dy"/"dx")^2 = - "a"`

∴ `"xy" ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" = - "ax"`

∴ `"xy" ("d"^2"y")/"dx"^2 + "x" ("dy"/"dx")^2 = "y" "dy"/"dx"`     ....[By (1)]

∴ `"xy" ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" - "y" "dy"/"dx" = 0`

This is the required D.E.

shaalaa.com

Notes

The answer in the textbook is incorrect.

Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Miscellaneous exercise 2 [पृष्ठ २१७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Miscellaneous exercise 2 | Q 3.1 | पृष्ठ २१७

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`


Solve the following differential equation:

`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`


Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0


Solve the following differential equation:

`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


In the following example verify that the given function is a solution of the differential equation.

`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

x dy = (x + y + 1) dx


Solve the following differential equation:

`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`


Solve the following differential equation:

`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`


The general solution of `(dy)/(dx)` = e−x is ______.


Select and write the correct alternative from the given option for the question

General solution of `y - x ("d"y)/("d"x)` = 0 is


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Form the differential equation of y = (c1 + c2)ex 


Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax


Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.


If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×