हिंदी

In the following example verify that the given function is a solution of the differential equation. x2yyxyxydxdyx2=2y2logy, x2+y2=xydxdy - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`

योग

उत्तर

`"x"^2 = "2y"^2 log "y"`      .....(1)

Differentiating both sides w.r.t. y, we get

`"2x" "dx"/"dy" = 2 "d"/"dy" ("y"^2 log "y")`

`= 2 ["y"^2 "d"/"dy" (log "y") + (log "y") * "d"/"dy"("y"^2)]`

`= 2 ["y"^2 xx 1/"y" + (log "y") xx "2y"]`

∴ `"x" "dx"/"dy" = "y" + 2"y" log "y"`

∴ `"xy" "dx"/"dy" = "y"^2 + 2"y"^2 log "y"`

= y2 + x2       ....[By (1)]

∴ `"x"^2 + "y"^2 = "xy" "dx"/"dy"`

Hence, x2 = 2y2 log y is a solution of the D.E.

`"x"^2 + "y"^2 = "xy" "dx"/"dy"`

shaalaa.com
Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Miscellaneous exercise 2 [पृष्ठ २१७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Miscellaneous exercise 2 | Q 2.5 | पृष्ठ २१७

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = 4(x - b)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Find the differential equation of the ellipse whose major axis is twice its minor axis.


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


In the following example verify that the given expression is a solution of the corresponding differential equation:

xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`


Solve the following differential equation:

`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


For the following differential equation find the particular solution satisfying the given condition:

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a sin (x + b)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Find the particular solution of the following differential equation:

y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


Select and write the correct alternative from the given option for the question

General solution of `y - x ("d"y)/("d"x)` = 0 is


Find the differential equation of family of lines making equal intercepts on coordinate axes


Form the differential equation of y = (c1 + c2)ex 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


Form the differential equation of all lines which makes intercept 3 on x-axis.


The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.


The differential equation of all parabolas whose axis is Y-axis, is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.


The differential equation for a2y = log x + b, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×