हिंदी

Find the differential equation of the ellipse whose major axis is twice its minor axis. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the differential equation of the ellipse whose major axis is twice its minor axis.

योग

उत्तर

Let 2a and 2b be lengths of major axis and minor axis of the ellipse.

Then 2a = 2(2b)

∴ a = 2b

∴ equation of the ellipse is

`"x"^2/"a"^2 + "y"^2/"b"^2 = 1`

i.e. `"x"^2/(2"b")^2 + "y"^2/"b"^2 = 1`

∴ `"x"^2/(4"b"^2) + "y"^2/"b"^2 = 1`

∴ x2 + 4y2 = 4b2 

Differentiating w.r.t. x, we get

`"2x" + 4 xx "2y" "dy"/"dx" = 0`

∴ `"x" + "4y" "dy"/"dx" = 0`

This is the required D.E.

shaalaa.com
Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Miscellaneous exercise 2 [पृष्ठ २१७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Miscellaneous exercise 2 | Q 4.3 | पृष्ठ २१७
बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Exercise 6.2 | Q 4 | पृष्ठ १९६

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = e−2x (A cos x + B sin x)


Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.


Solve the following differential equation:

`"y" - "x" "dy"/"dx" = 0`


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


Reduce the following differential equation to the variable separable form and hence solve:

`"dy"/"dx" = cos("x + y")`


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


Reduce the following differential equation to the variable separable form and hence solve:

(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.


Choose the correct option from the given alternatives:

`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Solve the following differential equation:

`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Find the particular solution of the following differential equation:

y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2


Select and write the correct alternative from the given option for the question

General solution of `y - x ("d"y)/("d"x)` = 0 is


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Form the differential equation of family of standard circle


Form the differential equation of y = (c1 + c2)ex 


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Find the differential equation of the family of all non-horizontal lines in a plane 


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be 8x, where A and B are arbitrary constants


The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


Form the differential equation of all lines which makes intercept 3 on x-axis.


Solve the following differential equation:

`xsin(y/x)dy = [ysin(y/x) - x]dx`


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.


If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.


The differential equation of the family of circles touching Y-axis at the origin is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×