Advertisements
Advertisements
प्रश्न
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
उत्तर
`"x"^2 + "y"^2 = "r"^2` .....(1)
Differentiating both sides w.r.t. x, we get
`2"x" + 2"y" "dy"/"dx" = 0`
∴ `2"y" "dy"/"dx" = - 2"x"`
∴ `"dy"/"dx" = - "x"/"y"`
∴ `"x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2)`
`= "x" (- "x"/"y") + "r" sqrt(1 + (- "x"/"y")^2)`
`= - "x"^2/"y" + "r" sqrt(1 + "x"^2/"y"^2)`
`= - "x"^2/"y" + "r" sqrt(("y"^2 + "x"^2)/"y"^2)`
`= - "x"^2/"y" + "r" sqrt("r"^2/"y"^2)` ....[By (1)]
`= - "x"^2/"y" + "r"^2/"y" = ("r"^2 - "x"^2)/"y"`
∴ `"y"^2/"y" = "y"`
Hence, x2 + y2 = r2 is a solution of the D.E.
`"x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all circles having radius 9 and centre at point (h, k).
Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`log ("dy"/"dx") = 2"x" + 3"y"`
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
For the following differential equation find the particular solution satisfying the given condition:
`(e^y + 1) cos x + e^y sin x. dy/dx = 0, "when" x = pi/6,` y = 0
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
Reduce the following differential equation to the variable separable form and hence solve:
`"dy"/"dx" = cos("x + y")`
Reduce the following differential equation to the variable separable form and hence solve:
`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`
Reduce the following differential equation to the variable separable form and hence solve:
(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
Choose the correct option from the given alternatives:
x2 + y2 = a2 is a solution of
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a sin (x + b)
Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Solve the following differential equation:
x dy = (x + y + 1) dx
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
The general solution of `(dy)/(dx)` = e−x is ______.
Select and write the correct alternative from the given option for the question
General solution of `y - x ("d"y)/("d"x)` = 0 is
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Form the differential equation of y = (c1 + c2)ex
Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex
Find the differential equation of the family of all non-horizontal lines in a plane
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Find the differential equation of the curve represented by xy = aex + be–x + x2
The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
The differential equation of the family of circles touching Y-axis at the origin is ______.
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.