हिंदी

Reduce the following differential equation to the variable separable form and hence solve: (2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Reduce the following differential equation to the variable separable form and hence solve:

(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.

योग

उत्तर

(2x - 2y + 3)dx - (x - y + 1)dy = 0

∴ (x - y + 1)dy = (2x - 2y + 3) dx

∴ `"dy"/"dx" = (2("x - y" + 3))/(("x - y") + 1)`   ....(1)

Put x - y = u. Then `1 - "dy"/"dx" = "du"/"dx"`

∴ `"dy"/"dx" = 1 - "du"/"dx"`

∴ (1) becomes, `1 - "du"/"dx" = (2"u" + 3)/("u" + 1)` 

∴ `"du"/"dx" = 1 - (2"u" + 3)/("u" + 1) = ("u" + 1 - 2"u" - 3)/("u + 1")`

∴ `"du"/"dx" = (- "u" - 2)/("u" + 1) = - (("u + 2")/("u + 1"))`

∴ `("u + 1")/("u + 2")`du = - dx

Integrating both sides, we get

`int ("u + 1")/("u + 2") "du" = - int 1 "dx"`

∴ `int (("u" + 2) - 1)/("u" + 2) "du" = - int 1 "dx"`

∴ `int (1 - 1/("u + 2")) "du" = - int 1 "dx"`

∴ u - log |u + 2| = - x + c

∴ x - y - log |x - y + 2| = - x + c

∴ (2x - y) - log |x - y + 2| = c

This is the general solution.

Now, y = 1, when x = 0

∴ (0 - 1) - log |0 - 1 + 2| = c

∴ - 1 - 0 = c

∴ c = - 1

∴ the particular solution is

(2x - y) - log |x - y + 2| = - 1

∴ (2x - y) - log |x - y + 2| + 1 = 0

shaalaa.com
Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Exercise 6.3 [पृष्ठ २०१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Exercise 6.3 | Q 4.5 | पृष्ठ २०१

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = A cos (log x) + B sin (log x)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a + `"a"/"x"`


Find the differential equation of the ellipse whose major axis is twice its minor axis.


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


In the following example verify that the given expression is a solution of the corresponding differential equation:

xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`


Solve the following differential equation:

`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


Reduce the following differential equation to the variable separable form and hence solve:

`"dy"/"dx" = cos("x + y")`


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Solve the following differential equation:

x dy = (x + y + 1) dx


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Find the particular solution of the following differential equation:

`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


The general solution of `(dy)/(dx)` = e−x is ______.


Select and write the correct alternative from the given option for the question

General solution of `y - x ("d"y)/("d"x)` = 0 is


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the differential equation of the family of all non-vertical lines in a plane


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Choose the correct alternative:

The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?


The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.


Solve the following differential equation:

`xsin(y/x)dy = [ysin(y/x) - x]dx`


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


The differential equation of all parabolas whose axis is Y-axis, is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.


The differential equation for a2y = log x + b, is ______.


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×