हिंदी

Solve the following differential equation: dydxkdydx=-k, where k is a constant. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.

योग

उत्तर

`"dy"/"dx" = - "k",`

∴ dy = - k dx

Integrating both sides, we get

`int "dy" = - "k" int "dx"`

∴ y = - kx + c

This is the general solution.

shaalaa.com
Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Exercise 6.3 [पृष्ठ २०१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Exercise 6.3 | Q 2.06 | पृष्ठ २०१

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a + `"a"/"x"`


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


Solve the following differential equation:

`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`


Solve the following differential equation:

cos x . cos y dy − sin x . sin y dx = 0


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Reduce the following differential equation to the variable separable form and hence solve:

`("x - y")^2 "dy"/"dx" = "a"^2`


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Solve the following differential equation:

x dy = (x + y + 1) dx


Solve the following differential equation:

`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`


Solve the following differential equation:

`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


The general solution of `(dy)/(dx)` = e−x is ______.


Select and write the correct alternative from the given option for the question

General solution of `y - x ("d"y)/("d"x)` = 0 is


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Choose the correct alternative:

The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is


If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?


If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.


The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Form the differential equation of all concentric circles having centre at the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×