Advertisements
Advertisements
प्रश्न
Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.
उत्तर
Slope of the line 3x - 2y + 7 = 0 is `(- 3)/-2 = 3/2`
∴ slope of normal to this line is `- 2/3`
Then the equation of the normal is
y = `- 2/3 "x" + "k"`, where k is an arbitrary constant.
Differentiating w.r.t. x, we get
`"dy"/"dx" = - 2/3 xx 1 + 0`
∴ `3"dy"/"dx" + 2 = 0`
This is the required D.E.
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y2 = (x + c)3
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a + `"a"/"x"`
Find the differential equation of the ellipse whose major axis is twice its minor axis.
Form the differential equation of all parabolas whose axis is the X-axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`log ("dy"/"dx") = 2"x" + 3"y"`
For the following differential equation find the particular solution satisfying the given condition:
3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
For the following differential equation find the particular solution satisfying the given condition:
`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Reduce the following differential equation to the variable separable form and hence solve:
`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`
Choose the correct option from the given alternatives:
The solution of `("x + y")^2 "dy"/"dx" = 1` is
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
Choose the correct option from the given alternatives:
The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Solve the following differential equation:
x dy = (x + y + 1) dx
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
Find the particular solution of the following differential equation:
`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`
Select and write the correct alternative from the given option for the question
General solution of `y - x ("d"y)/("d"x)` = 0 is
Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
Find the differential equation of the family of all non-vertical lines in a plane
Find the differential equation of the family of all non-horizontal lines in a plane
The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.
Solve the differential equation
cos2(x – 2y) = `1 - 2dy/dx`
Form the differential equation of all concentric circles having centre at the origin.