हिंदी

Find the particular solution of the following differential equation: exydxexyxydy(1+2ex/y)dx+2ex/y(1-xy)dy=0 when y(0) = 1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`

योग

उत्तर

`(1 + 2"e"^("x"//"y"))"dx" + 2"e"^("x"//"y")(1 - "x"/"y")"dy" = 0`

∴ `(1 + 2"e"^("x"//"y"))"dx" = - 2"e"^("x"//"y")(1 - "x"/"y")"dy"`

∴ `(1 + 2"e"^("x"//"y"))"dx" = 2"e"^("x"//"y")("x"/"y" - 1)"dy"`

∴ `"dy"/"dx" = (2"e"^("x"//"y")("x"/"y" - 1))/(1 + 2"e"^("x"//"y"))`   .....(1)

Put x = vy

∴ `"dx"/"dy" = "v" + "y" "dv"/"dy"`

∴ (1) becomes, `"v" + "y" "dv"/"dy" = (2"e"^"v"("v - 1"))/(1 + "2e"^"v")`

∴ `"y" "dv"/"dy" = (2"e"^"v"("v - 1"))/(1 + "2e"^"v") - "v"`

`= (2"ve"^"v" - 2"e"^"v" - "v" - 2"ve"^"v")/(1 + "2e"^"v")`

`= - (("v" + 2"e"^"v")/(1 + "2e"^"v"))`

∴ `((1 + 2"e"^"v")/("v" + 2"e"^"v"))"dv" ≡ - 1/"y" "dy"`

Integrating both sides, we get

`int ((1 + 2"e"^"v")/("v" + 2"e"^"v"))"dv" ≡ - int 1/"y" "dy"`

∴ log |v + 2ev| = - log y + log c  ....`[because "d"/"dx" ("v" + "2e"^"v") = 1 + 2"e"^"v" and int("f"'("v"))/("f"("v")) "dv" = log |"f"("v")| + "c"]`

∴ log |v + 2ev| + log y = log c

∴ log |y (v + 2ev)| = log c

∴ y(v + 2ev) = c

∴ `"y"("x"/"y" + 2"e"^("x"//"y"))`= c

∴ x + 2yex/y = c

This is the general solution.

Now, y(0) = 1, i.e. when x = 0, y = 1

∴ 0 + 2(1)e0 = c

∴ c = 2

∴ the particular solution is x + 2yex/y = 2

shaalaa.com

Notes

The question is modified.

Formation of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Miscellaneous exercise 2 [पृष्ठ २१८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Miscellaneous exercise 2 | Q 6.5 | पृष्ठ २१८

संबंधित प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = A cos (log x) + B sin (log x)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

c1x3 + c2y2 = 5


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = e−2x (A cos x + B sin x)


Find the differential equation of all circles having radius 9 and centre at point (h, k).


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


For the following differential equation find the particular solution satisfying the given condition:

3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.


Reduce the following differential equation to the variable separable form and hence solve:

`"dy"/"dx" = cos("x + y")`


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


In the following example verify that the given function is a solution of the differential equation.

`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`


In the following example verify that the given function is a solution of the differential equation.

`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Select and write the correct alternative from the given option for the question

General solution of `y - x ("d"y)/("d"x)` = 0 is


Find the differential equation of family of lines making equal intercepts on coordinate axes


Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax


Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the differential equation from the relation x2 + 4y2 = 4b2 


Find the differential equation of the family of all non-vertical lines in a plane


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


Choose the correct alternative:

The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.


Form the differential equation of all lines which makes intercept 3 on x-axis.


The differential equation of all parabolas whose axis is Y-axis, is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


Form the differential equation whose general solution is y = a cos 2x + b sin 2x.


Solve the differential equation

ex tan y dx + (1 + ex) sec2 y dy = 0


Form the differential equation of all concentric circles having centre at the origin.


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×