Advertisements
Advertisements
प्रश्न
Form the differential equation of all lines which makes intercept 3 on x-axis.
उत्तर
Equation of straight line is y = mx + c
At x-axis, y = 0
So, x = `(-c)/m`
Here, slope = m
If slope and x-intercept are equal
`(-c)/m = m`
⇒ c = – m2
∴ y = mx – m2
∴ `(dy)/(dx)` = m
Since, m = 3
∴ `(dy)/(dx)` = 3, which is the required equation.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
Ax2 + By2 = 1
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y2 = (x + c)3
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.
Find the differential equation of all circles having radius 9 and centre at point (h, k).
Form the differential equation of all parabolas whose axis is the X-axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
For the following differential equation find the particular solution satisfying the given condition:
`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`
Choose the correct option from the given alternatives:
x2 + y2 = a2 is a solution of
Choose the correct option from the given alternatives:
The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`
Choose the correct option from the given alternatives:
`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = b(x + 4)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
Find the particular solution of the following differential equation:
`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`
Find the differential equation of family of lines making equal intercepts on coordinate axes
Form the differential equation of family of standard circle
Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?
The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.
The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.