Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
उत्तर
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
∴ y cos2y dy + x cos2 x dx = 0
∴ `x((1 + cos2x)/2) dx + y((1 + cos 2y)/2) dy` = 0
∴ x(1 + cos 2x) dx + y(1 + cos 2y)dy = 0
∴ x dx + x cos 2x dx + y dy + y cos 2y dy = 0
Integrating both sides, we get
`int xdx + int y dy + int x cos 2x dx + int y cos 2y dy = c_1` .....(i)
Using integration by parts
`int x cos 2x dx = x int cos 2x dx - int [d/dx (x) int cos 2x dx]dx`
= `x((sin 2x)/2) - int 1. (sin 2x)/2 dx`
= `(x sin 2x)/2 + 1/2 . (cos 2x)/2`
= `(x sin 2x)/2 + (cos 2x)/4`
Similarly, `int y cos 2y dy = (y sin 2y)/2 + (cos 2y)/4`
∴ From equation (i), we get
`x^2/2 + y^2/2 + (x sin 2x)/2 + (cos 2x)/4 + (y sin 2y)/2 + (cos 2y)/4` = c1
Multiplying throughout by 4, this becomes
2x2 + 2y2 + 2x sin 2x + cos 2x + 2y sin 2y + cos 2y = 4c1
∴ 2(x2 + y2) + 2(x sin 2x + y sin 2y) + cos 2y + cos 2x + c = 0
where c = – 4c1
This is the general solution.
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
Ax2 + By2 = 1
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y2 = (x + c)3
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = Ae5x + Be-5x
Find the differential equation of all circles having radius 9 and centre at point (h, k).
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`log ("dy"/"dx") = 2"x" + 3"y"`
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Reduce the following differential equation to the variable separable form and hence solve:
(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
Choose the correct option from the given alternatives:
x2 + y2 = a2 is a solution of
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Find the particular solution of the following differential equation:
`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
The general solution of `(dy)/(dx)` = e−x is ______.
Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`
Form the differential equation of y = (c1 + c2)ex
Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Find the differential equation of the family of all non-vertical lines in a plane
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be –8x, where A and B are arbitrary constants
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
The differential equation of the family of circles touching Y-axis at the origin is ______.
The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.