English

Solve the following differential equation: cos2yxdy+cos2xydx = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0

Sum

Solution

`(cos^2y)/x dy + (cos^2x)/y dx` = 0

∴ y cos2y dy + x cos2 x dx = 0

∴ `x((1 + cos2x)/2) dx + y((1 + cos 2y)/2) dy` = 0

∴ x(1 + cos 2x) dx + y(1 + cos 2y)dy = 0

∴ x dx + x cos 2x dx + y dy + y cos 2y dy = 0

Integrating both sides, we get

`int xdx + int y dy + int x cos 2x dx + int y cos 2y dy = c_1`      .....(i)

Using integration by parts

`int x cos 2x dx = x int cos 2x dx - int [d/dx (x) int cos 2x dx]dx`

= `x((sin 2x)/2) - int 1. (sin 2x)/2 dx`

= `(x sin 2x)/2 + 1/2 . (cos 2x)/2`

= `(x sin 2x)/2 + (cos 2x)/4`

Similarly, `int y cos 2y dy = (y sin 2y)/2 + (cos 2y)/4`

∴ From equation (i), we get

`x^2/2 + y^2/2 + (x sin 2x)/2 + (cos 2x)/4 + (y sin 2y)/2 + (cos 2y)/4` = c1

Multiplying throughout by 4, this becomes

2x2 + 2y2 + 2x sin 2x + cos 2x + 2y sin 2y + cos 2y = 4c1 

∴ 2(x2 + y2) + 2(x sin 2x + y sin 2y) + cos 2y + cos 2x + c = 0

where c = – 4c1

This is the general solution.

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.3 [Page 201]

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = e−2x (A cos x + B sin x)


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


Solve the following differential equation:

cos x . cos y dy − sin x . sin y dx = 0


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is


The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.


Choose the correct option from the given alternatives:

The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Solve the following differential equation:

x dy = (x + y + 1) dx


Find the particular solution of the following differential equation:

`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


The general solution of `(dy)/(dx)` = e−x is ______.


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


Find the differential equation of the curve represented by xy = aex + be–x + x2


Choose the correct alternative:

The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.


The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.


The differential equation of the family of circles touching Y-axis at the origin is ______.


The differential equation for a2y = log x + b, is ______.


Form the differential equation whose general solution is y = a cos 2x + b sin 2x.


Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.


Solve the differential equation

ex tan y dx + (1 + ex) sec2 y dy = 0


Form the differential equation of all concentric circles having centre at the origin.


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×