Advertisements
Advertisements
Question
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Options
y = aex
y = be2x
y = be−2x
y = eax
Solution
y = eax
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = A cos (log x) + B sin (log x)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = c1e2x + c2e5x
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
Find the differential equation of all circles having radius 9 and centre at point (h, k).
Solve the following differential equation:
`"sec"^2 "x" * "tan y" "dx" + "sec"^2 "y" * "tan x" "dy" = 0`
Solve the following differential equation:
`"dy"/"dx" = - "k",` where k is a constant.
For the following differential equation find the particular solution satisfying the given condition:
`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Reduce the following differential equation to the variable separable form and hence solve:
(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
Choose the correct option from the given alternatives:
The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = b(x + 4)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
Find the particular solution of the following differential equation:
`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`
Select and write the correct alternative from the given option for the question
The solution of `("d"y)/("d"x)` = 1 is
Form the differential equation of y = (c1 + c2)ex
Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex
Find the differential equation from the relation x2 + 4y2 = 4b2
Find the differential equation of the family of all non-vertical lines in a plane
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be –8x, where A and B are arbitrary constants
The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
The differential equation of the family of circles touching Y-axis at the origin is ______.
If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.
A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.