Advertisements
Advertisements
Question
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Solution
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)` ....(1)
Differentiating twice w.r.t. x, we get
`"dy"/"dx" = "Ae"^(3"x" + 1) * "d"/"dx" (3"x" + 1) + "Be"^(- 3"x" + 1) * "d"/"dx" (- 3"x" + 1)`
`= "Ae"^(3"x" + 1) xx (3 + 1 + 0) + "Be"^(- 3"x" + 1) xx (- 3 xx 1 + 0)`
`= 3"Ae"^(3"x" + 1) - 3 "Be"^(- 3"x" + 1)`
and `("d"^2 "y")/"dx"^2 = 3 "Ae"^(3"x" + 1) * "d"/"dx" ("3x" + 1) - 3 "Be"^(- 3"x" + 1) * "d"/"dx" (- 3"x" + 1)`
`= 3"Ae"^(3"x" + 1) xx (3 xx 1 + 0) - 3"Be"^(- 3"x" + 1) xx (- 3 xx 1 + 0)`
`= 9"Ae"^(3"x" + 1) - 9"Be"^(- 3"x" + 1)`
`= 9 ("Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1))`
= 9y ....[By (1)]
∴ `("d"^2"y")/"dx"^2 - 9"y" = 0`
This is the required D.E.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = A cos (log x) + B sin (log x)
Find the differential equation of the ellipse whose major axis is twice its minor axis.
Find the differential equation of all circles having radius 9 and centre at point (h, k).
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`(e^y + 1) cos x + e^y sin x. dy/dx = 0, "when" x = pi/6,` y = 0
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Choose the correct option from the given alternatives:
x2 + y2 = a2 is a solution of
Choose the correct option from the given alternatives:
The solution of `("x + y")^2 "dy"/"dx" = 1` is
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
Choose the correct option from the given alternatives:
`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of
In the following example verify that the given function is a solution of the differential equation.
`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
The general solution of `(dy)/(dx)` = e−x is ______.
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Form the differential equation of family of standard circle
Form the differential equation of y = (c1 + c2)ex
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
The differential equation of all parabolas whose axis is Y-axis, is ______.
Solve the differential equation
cos2(x – 2y) = `1 - 2dy/dx`
Form the differential equation of all concentric circles having centre at the origin.