English

Reduce the following differential equation to the variable separable form and hence solve: x - ydydxa(x - y)2dydx=a2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Reduce the following differential equation to the variable separable form and hence solve:

`("x - y")^2 "dy"/"dx" = "a"^2`

Sum

Solution

`("x - y")^2 "dy"/"dx" = "a"^2`     .....(1)

Put x - y = u

∴ x - u = y

∴ 1 - `"du"/"dx" = "dy"/"dx"`

∴ (1) becomes, `"u"^2 (1 - "du"/"dx") = "a"^2`

∴ `"u"^2 - "u"^2 "du"/"dx" = "a"^2`

∴ `"u"^2 - "a"^2 = "u"^2 "du"/"dx"`

∴ dx = `"u"^2/("u"^2 - "a"^2)`du

Integrating both sides, we get

`int "dx" = int (("u"^2 - "a"^2) + "a"^2)/("u"^2 - "a"^2)`du

∴ x = `int 1  "du" + "a"^2 int "du"/("u"^2 - "a"^2) + "c"_1`

`1/"2a" log |("u - a")/("u + a")| + "c"_1`

∴ x = x - y + `"a"/2 log |("x - y - a")/("x - y + a")| + "c"_1`

∴ - c1 + y = `"a"/2 log |("x - y - a")/("x - y + a")|`

∴ - 2c1 + 2y =  a log `|("x - y - a")/("x - y + a")|`

∴ c + 2y = a log `|("x - y - a")/("x - y + a")|`, where c = - 2c1

This is the general solution.

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.3 [Page 201]

APPEARS IN

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = 4(x - b)


Find the differential equation of the ellipse whose major axis is twice its minor axis.


Find the differential equation of all circles having radius 9 and centre at point (h, k).


In the following example verify that the given expression is a solution of the corresponding differential equation:

xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

`"sec"^2 "x" * "tan y"  "dx" + "sec"^2 "y" * "tan x"  "dy" = 0` 


Solve the following differential equation:

`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


For the following differential equation find the particular solution satisfying the given condition:

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a sin (x + b)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

x dy = (x + y + 1) dx


Solve the following differential equation:

`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`


Find the particular solution of the following differential equation:

y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2


Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Find the differential equation from the relation x2 + 4y2 = 4b2 


Find the differential equation of the family of all non-horizontal lines in a plane 


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?


The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.


Solve the following differential equation:

`xsin(y/x)dy = [ysin(y/x) - x]dx`


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


The differential equation for a2y = log x + b, is ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


Form the differential equation of all concentric circles having centre at the origin.


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×