Advertisements
Advertisements
Question
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Solution
`("x - y")^2 "dy"/"dx" = "a"^2` .....(1)
Put x - y = u
∴ x - u = y
∴ 1 - `"du"/"dx" = "dy"/"dx"`
∴ (1) becomes, `"u"^2 (1 - "du"/"dx") = "a"^2`
∴ `"u"^2 - "u"^2 "du"/"dx" = "a"^2`
∴ `"u"^2 - "a"^2 = "u"^2 "du"/"dx"`
∴ dx = `"u"^2/("u"^2 - "a"^2)`du
Integrating both sides, we get
`int "dx" = int (("u"^2 - "a"^2) + "a"^2)/("u"^2 - "a"^2)`du
∴ x = `int 1 "du" + "a"^2 int "du"/("u"^2 - "a"^2) + "c"_1`
`1/"2a" log |("u - a")/("u + a")| + "c"_1`
∴ x = x - y + `"a"/2 log |("x - y - a")/("x - y + a")| + "c"_1`
∴ - c1 + y = `"a"/2 log |("x - y - a")/("x - y + a")|`
∴ - 2c1 + 2y = a log `|("x - y - a")/("x - y + a")|`
∴ c + 2y = a log `|("x - y - a")/("x - y + a")|`, where c = - 2c1
This is the general solution.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Find the differential equation of the ellipse whose major axis is twice its minor axis.
Find the differential equation of all circles having radius 9 and centre at point (h, k).
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`log ("dy"/"dx") = 2"x" + 3"y"`
Solve the following differential equation:
`"sec"^2 "x" * "tan y" "dx" + "sec"^2 "y" * "tan x" "dy" = 0`
Solve the following differential equation:
`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a sin (x + b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
x dy = (x + y + 1) dx
Solve the following differential equation:
`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
Find the particular solution of the following differential equation:
`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Find the differential equation from the relation x2 + 4y2 = 4b2
Find the differential equation of the family of all non-horizontal lines in a plane
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.
If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
The differential equation for a2y = log x + b, is ______.
Solve the differential equation
cos2(x – 2y) = `1 - 2dy/dx`
Form the differential equation of all concentric circles having centre at the origin.
A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.