English

Find the differential equation from the relation x2 + 4y2 = 4b2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the differential equation from the relation x2 + 4y2 = 4b2 

Sum

Solution

x2 + 4y2 = 4b2      ......(i)

Here, b is an arbitrary constant.

Differentiating w.r.t. x, we get

`2x + 4(2y  ("d"y)/("d"x))` = 0

∴ `x + 4y ("d"y)/("d"x)` = 0

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 2.6: Differential Equations - Attempt the following questions III

APPEARS IN

SCERT Maharashtra Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC
Chapter 2.6 Differential Equations
Attempt the following questions III | Q 3

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = e−2x (A cos x + B sin x)


Find the differential equation of all circles having radius 9 and centre at point (h, k).


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Reduce the following differential equation to the variable separable form and hence solve:

`("x - y")^2 "dy"/"dx" = "a"^2`


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

`"y"^2 = "a"("b - x")("b + x")`


In the following example verify that the given function is a solution of the differential equation.

`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`


Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Find the differential equation of family of lines making equal intercepts on coordinate axes


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Form the differential equation of family of standard circle


Form the differential equation of y = (c1 + c2)ex 


Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax


Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.


If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.


The differential equation for a2y = log x + b, is ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


Form the differential equation whose general solution is y = a cos 2x + b sin 2x.


Form the differential equation of all concentric circles having centre at the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×