English

Verify y = log x + c is the solution of differential equation xd2ydx2+dydx = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0

Sum

Solution

y = log x + c

Differentiating w.r.t. x, we get

`("d"y)/("d"x) = 1/x`

∴ `x ("d"y)/("d"x)` = 1

Again, differentiating w.r.t. x, we get

`x ("d"^2y)/("d"x^2) + ("d"y)/("d"x) xx 1` = 0

∴ `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0

∴ y = log x + c is the solution of `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 2.6: Differential Equations - Attempt the following questions II

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = e−2x (A cos x + B sin x)


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

cos x . cos y dy − sin x . sin y dx = 0


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0


Solve the following differential equation:

`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`


Solve the following differential equation:

`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


For the following differential equation find the particular solution satisfying the given condition:

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

`"y"^2 = "a"("b - x")("b + x")`


In the following example verify that the given function is a solution of the differential equation.

`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a sin (x + b)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Find the particular solution of the following differential equation:

y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Find the differential equation of the family of all non-horizontal lines in a plane 


Choose the correct alternative:

The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.


The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.


If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.


The differential equation of all parabolas whose axis is Y-axis, is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


Form the differential equation whose general solution is y = a cos 2x + b sin 2x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×