English

Obtain the differential equation by eliminating the arbitrary constants from the following equation: y = axbxacos(logx)+bsin(logx) - Mathematics and Statistics

Advertisements
Advertisements

Question

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`

Sum

Solution

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`

∴ y2 = a cos (log x) + b sin (log x)    ....(1)

Differentiating both sides w.r.t. x, we get

`"2y" "dy"/"dx" = "a" "d"/"dx" [cos (log "x")] + "b" "d"/"dx" [sin (log "x")]`

`= "a" [ - sin (log "x")] * "d"/"dx" (log "x") + "b" cos (log "x") * "d"/"dx" (log "x")`

`= - "a" sin (log "x") xx 1/"x" + "b" cos (log "x") xx 1/"x"`

∴ `"2xy" "dy"/"dx" = - "a" sin (log "x") + "b" cos (log "x")`

Differentiating again w.r.t. x, we get

`2 ["xy" * "d"/"dx" ("dy"/"dx") + "dy"/"dx" * "d"/"dx" ("xy")]`

`= - "a" "d"/"dx" [sin (log "x")] + "b" "d"/"dx" [cos (log "x")]`

∴ `2 ["xy"  ("d"^2"y")/"dx"^2 + "dy"/"dx" ("x" "dy"/"dx" + "y" xx 1)]`

`= - "a" cos (log "x") * "d"/"dx" (log "x") + "b"[- sin (log "x")] * "d"/"dx" (log "x")`

∴ `2"xy" ("d"^2"y")/"dx"^2 + 2"x" ("dy"/"dx")^2 + "2y" "dy"/"dx"

`= - "a" cos (log "x") xx 1/"x" - "b" sin (log "x") xx 1/"x"`

∴ `2"x"^2"y" ("d"^2"y")/"dx"^2 + 2"x"^2("dy"/"dx")^2 + 2"xy" "dy"/"dx"`

`= -["a" cos (log "x") + "b" sin (log "x")] = - "y"^2`  ......[By (1)]

∴ `2"x"^2"y" ("d"^2"y")/"dx"^2 + 2"x"^2 ("dy"/"dx")^2 + 2"xy" "dy"/"dx" + "y"^2 = 0`

This is the required D.E.

shaalaa.com

Notes

The answer in the textbook is incorrect.

Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Miscellaneous exercise 2 [Page 217]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 6 Differential Equations
Miscellaneous exercise 2 | Q 3.4 | Page 217

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = 4(x - b)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

c1x3 + c2y2 = 5


Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.


Find the differential equation of all circles having radius 9 and centre at point (h, k).


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

cos x . cos y dy − sin x . sin y dx = 0


Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


In the following example verify that the given function is a solution of the differential equation.

`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`


In the following example verify that the given function is a solution of the differential equation.

`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Find the particular solution of the following differential equation:

`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


The general solution of `(dy)/(dx)` = e−x is ______.


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Find the differential equation of family of lines making equal intercepts on coordinate axes


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is 


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis


Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be 8x, where A and B are arbitrary constants


Find the differential equation of the curve represented by xy = aex + be–x + x2


Choose the correct alternative:

The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.


The differential equation of all parabolas whose axis is Y-axis, is ______.


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×