Advertisements
Advertisements
Question
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Solution
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
∴ y2 = a cos (log x) + b sin (log x) ....(1)
Differentiating both sides w.r.t. x, we get
`"2y" "dy"/"dx" = "a" "d"/"dx" [cos (log "x")] + "b" "d"/"dx" [sin (log "x")]`
`= "a" [ - sin (log "x")] * "d"/"dx" (log "x") + "b" cos (log "x") * "d"/"dx" (log "x")`
`= - "a" sin (log "x") xx 1/"x" + "b" cos (log "x") xx 1/"x"`
∴ `"2xy" "dy"/"dx" = - "a" sin (log "x") + "b" cos (log "x")`
Differentiating again w.r.t. x, we get
`2 ["xy" * "d"/"dx" ("dy"/"dx") + "dy"/"dx" * "d"/"dx" ("xy")]`
`= - "a" "d"/"dx" [sin (log "x")] + "b" "d"/"dx" [cos (log "x")]`
∴ `2 ["xy" ("d"^2"y")/"dx"^2 + "dy"/"dx" ("x" "dy"/"dx" + "y" xx 1)]`
`= - "a" cos (log "x") * "d"/"dx" (log "x") + "b"[- sin (log "x")] * "d"/"dx" (log "x")`
∴ `2"xy" ("d"^2"y")/"dx"^2 + 2"x" ("dy"/"dx")^2 + "2y" "dy"/"dx"
`= - "a" cos (log "x") xx 1/"x" - "b" sin (log "x") xx 1/"x"`
∴ `2"x"^2"y" ("d"^2"y")/"dx"^2 + 2"x"^2("dy"/"dx")^2 + 2"xy" "dy"/"dx"`
`= -["a" cos (log "x") + "b" sin (log "x")] = - "y"^2` ......[By (1)]
∴ `2"x"^2"y" ("d"^2"y")/"dx"^2 + 2"x"^2 ("dy"/"dx")^2 + 2"xy" "dy"/"dx" + "y"^2 = 0`
This is the required D.E.
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y2 = (x + c)3
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.
Find the differential equation of all circles having radius 9 and centre at point (h, k).
Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.
Form the differential equation of all parabolas whose axis is the X-axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
Solve the following differential equation:
`log ("dy"/"dx") = 2"x" + 3"y"`
Solve the following differential equation:
cos x . cos y dy − sin x . sin y dx = 0
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
For the following differential equation find the particular solution satisfying the given condition:
`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`
Reduce the following differential equation to the variable separable form and hence solve:
`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.
In the following example verify that the given function is a solution of the differential equation.
`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
In the following example verify that the given function is a solution of the differential equation.
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Find the particular solution of the following differential equation:
`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
The general solution of `(dy)/(dx)` = e−x is ______.
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Find the differential equation of family of lines making equal intercepts on coordinate axes
Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be –8x, where A and B are arbitrary constants
Find the differential equation of the curve represented by xy = aex + be–x + x2
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.
The differential equation of all parabolas whose axis is Y-axis, is ______.
If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2