Advertisements
Advertisements
Question
Find the particular solution of the following differential equation:
`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1
Solution
`("x + 2y"^2) "dy"/"dx" = "y"`
∴ `"dy"/"dx" = ("x + 2y"^2)/"y" = "x"/"y" + "2y"`
∴ `"dx"/"dy" - 1/"y" * "x" = "2y"` ....(1)
This is the linear differential equation of the form
`"dx"/"dy" + "Px" = "Q"` where P = `- 1/"y"` and Q = 2y.
∴ I.F. = `"e"^(int "P dy") = "e"^(int - 1/"y" "dy")`
`= "e"^(- log "y") = "e"^(log (1/"y")) = 1/"y"`
∴ the solution of (1) is given by
`"x" * ("I.F.") = int "Q" * ("I.F.") "dy" + "c"`
∴ `"x" xx 1/"y" = int "2y" xx 1/"y" "dy" + "c"`
∴ `"x"/"y" = 2 int 1 "dy" + "c"`
∴ `"x"/"y" = 2"y" + "c"`
∴ x = 2y2 + cy
This is the general solution.
When x = 2, y = 1, we have
2 = 2(1)2 + c(1)
∴ c = 0
∴the particular solution is x = 2y2.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = c1e2x + c2e5x
Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.
Find the differential equation of the ellipse whose major axis is twice its minor axis.
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
Solve the following differential equation:
`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Reduce the following differential equation to the variable separable form and hence solve:
`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
Choose the correct option from the given alternatives:
The solution of `("x + y")^2 "dy"/"dx" = 1` is
Choose the correct option from the given alternatives:
`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of
In the following example verify that the given function is a solution of the differential equation.
`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
In the following example verify that the given function is a solution of the differential equation.
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a sin (x + b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = b(x + 4)
Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
The general solution of `(dy)/(dx)` = e−x is ______.
Select and write the correct alternative from the given option for the question
General solution of `y - x ("d"y)/("d"x)` = 0 is
Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`
Form the differential equation of family of standard circle
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Find the differential equation of the family of all non-vertical lines in a plane
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.
The differential equation of the family of circles touching Y-axis at the origin is ______.