Advertisements
Advertisements
Question
In the following example verify that the given function is a solution of the differential equation.
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
Solution
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2`
∴ `"xy" - "x"^2 = "ae"^"x" + "be"^-"x"` ....(1)
Differentiating both sides w.r.t. x, we get
`"x" "dy"/"dx" + "y" * "d"/"dx" ("x") - "2x" = "ae"^"x" + "be"^-"x" xx (- 1)`
∴ `"x" "dy"/"dx" + "y" - 2"x" = "ae"^"x" - "be"^-"x"`
Differentiating again w.r.t. x, we get
`"x" * "d"/"dx" ("dy"/"dx") + "dy"/"dx" * "d"/"dx" ("x") + "dy"/"dx" - 2 xx 1 = "ae"^"x" - "be"^-"x" (- 1)`
∴ `"x" ("d"^2"y")/"dx"^2 + "dy"/"dx" xx 1 + "dy"/"dx" - 2 = "ae"^"x" + "be"^-"x"`
∴ `"x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" - 2 = "xy" - "x"^2` ....[By (1)]
∴ `"x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
Hence, xy = `"ae"^"x" - "be"^-"x" + "x"^2` is a solution of the D.E.
`"x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
Ax2 + By2 = 1
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a + `"a"/"x"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = c1e2x + c2e5x
Find the differential equation of the ellipse whose major axis is twice its minor axis.
Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`
Solve the following differential equation:
`log ("dy"/"dx") = 2"x" + 3"y"`
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
Solve the following differential equation:
cos x . cos y dy − sin x . sin y dx = 0
Solve the following differential equation:
`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
Choose the correct option from the given alternatives:
x2 + y2 = a2 is a solution of
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
The general solution of `(dy)/(dx)` = e−x is ______.
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Find the differential equation of the family of all non-vertical lines in a plane
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
Form the differential equation of all lines which makes intercept 3 on x-axis.
The differential equation of all parabolas whose axis is Y-axis, is ______.
The differential equation of the family of circles touching Y-axis at the origin is ______.
The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.
The differential equation for a2y = log x + b, is ______.
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.
Form the differential equation of all concentric circles having centre at the origin.