English

In the following example verify that the given function is a solution of the differential equation. xyaexbexxxdydxdydxxxyxy=aex+be-x+x2;xd2ydx2+2dydx+x2=xy+2 - Mathematics and Statistics

Advertisements
Advertisements

Question

In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`

Sum

Solution

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2`

∴ `"xy" - "x"^2 = "ae"^"x" + "be"^-"x"`     ....(1)

Differentiating both sides w.r.t. x, we get

`"x" "dy"/"dx" + "y" * "d"/"dx" ("x") - "2x" = "ae"^"x" + "be"^-"x" xx (- 1)`

∴ `"x" "dy"/"dx" + "y" - 2"x" = "ae"^"x" - "be"^-"x"`

Differentiating again w.r.t. x, we get

`"x" * "d"/"dx" ("dy"/"dx") + "dy"/"dx" * "d"/"dx" ("x") + "dy"/"dx" - 2 xx 1 = "ae"^"x" - "be"^-"x" (- 1)`

∴ `"x" ("d"^2"y")/"dx"^2 + "dy"/"dx" xx 1 + "dy"/"dx" - 2 = "ae"^"x" + "be"^-"x"`

∴ `"x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" - 2 = "xy" - "x"^2`        ....[By (1)]

∴ `"x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`

Hence, xy = `"ae"^"x" - "be"^-"x" + "x"^2` is a solution of the D.E.

`"x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Miscellaneous exercise 2 [Page 217]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 6 Differential Equations
Miscellaneous exercise 2 | Q 2.4 | Page 217

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a + `"a"/"x"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


Find the differential equation of the ellipse whose major axis is twice its minor axis.


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

`"y" - "x" "dy"/"dx" = 0`


Solve the following differential equation:

cos x . cos y dy − sin x . sin y dx = 0


Solve the following differential equation:

`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`


For the following differential equation find the particular solution satisfying the given condition:

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


In the following example verify that the given function is a solution of the differential equation.

`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


The general solution of `(dy)/(dx)` = e−x is ______.


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the differential equation of the family of all non-vertical lines in a plane


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.


Form the differential equation of all lines which makes intercept 3 on x-axis.


The differential equation of all parabolas whose axis is Y-axis, is ______.


The differential equation of the family of circles touching Y-axis at the origin is ______.


The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.


The differential equation for a2y = log x + b, is ______.


Form the differential equation whose general solution is y = a cos 2x + b sin 2x.


Form the differential equation of all concentric circles having centre at the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×