English

Obtain the differential equation by eliminating the arbitrary constants from the following equation: Ax2 + By2 = 1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1

Sum

Solution

Ax2 + By2 = 1

Differentiating both sides w.r.t. x, we get

`"A" xx "2x" + "B" xx "2y"  "dy"/"dx" = 0`

∴ `"Ax" + "By" "dy"/"dx" = 0`   ....(1)

Differentiating again w.r.t. x, we get

`"A" xx 1 + "B" ["y" "d"/"dx" ("dy"/"dx") + "dy"/"dx"*"dy"/"dx"] = 0`

∴ `"A + B" ["y"  ("d"^2"y")/"dx"^2 + ("dy"/"dx")^2] = 0`

∴ `"A" = - "B"["y" ("d"^2"y")/"dx"^2 + ("dy"/"dx")^2]`

Substituting the value of A in (1), we get

`- "B x"["y" ("d"^2"y")/"dx"^2 + ("dy"/"dx")^2] + "B y" "dy"/"dx" = 0`

∴ `- "x" ["y" ("d"^2"y")/"dx"^2 + ("dy"/"dx")^2] + "y" "dy"/"dx" = 0`

∴ `- "xy" ("d"^2"y")/"dx"^2 - "x" ("dy"/"dx")^2 + "y" "dy"/"dx" = 0`

∴ `"xy" ("d"^2"y")/"dx"^2 + "x" ("dy"/"dx")^2 - "y" "dy"/"dx" = 0`

This is the required D.E.

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.2 [Page 196]

APPEARS IN

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = A cos (log x) + B sin (log x)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = Ae5x + Be-5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

c1x3 + c2y2 = 5


Find the differential equation of the ellipse whose major axis is twice its minor axis.


Find the differential equation of all circles having radius 9 and centre at point (h, k).


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


For the following differential equation find the particular solution satisfying the given condition:

3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

`"y"^2 = "a"("b - x")("b + x")`


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


Find the particular solution of the following differential equation:

y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


Find the differential equation of family of lines making equal intercepts on coordinate axes


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Find the differential equation from the relation x2 + 4y2 = 4b2 


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.


If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.


Form the differential equation of all lines which makes intercept 3 on x-axis.


The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


Form the differential equation whose general solution is y = a cos 2x + b sin 2x.


Form the differential equation of all concentric circles having centre at the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×