English

Obtain the differential equation by eliminating the arbitrary constants from the following equation: y = A cos (log x) + B sin (log x) - Mathematics and Statistics

Advertisements
Advertisements

Question

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = A cos (log x) + B sin (log x)

Sum

Solution

y = A cos (log x) + B sin (log x)    ...(1)

Differentiating w.r.t. x, we get

`"dy"/"dx" = - "A  sin" ("log x")*"d"/"dx" ("log  x") + "B cos" ("log x")*"d"/"dx" ("log x")`

`= (- "A sin" ("log x"))/"x" + ("B cos" (log "x"))/"x"`

∴ `"x" "dy"/"dx"` = – A sin (log x) + B cos (log x)

Differentiating again w.r.t. x, we get

`"x" ("d"^2"y")/"dx"^2 + "dy"/"dx" = (- "A cos" ("log x"))/"x" + ("B sin" (log "x"))/"x"`

∴ `"x"^2 ("d"^2"y")/"dx"^2 + "x""dy"/"dx"` = – [A cos (log x) + B sin (log x)] = – y    .....[By (1)]

∴ `"x"^2 ("d"^2"y")/"dx"^2 + "x""dy"/"dx" + "y"` = 0 is the required D.E.

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.2 [Page 196]

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = Ae5x + Be-5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

c1x3 + c2y2 = 5


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`


Solve the following differential equation:

`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`


Solve the following differential equation:

cos x . cos y dy − sin x . sin y dx = 0


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Reduce the following differential equation to the variable separable form and hence solve:

(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


The general solution of `(dy)/(dx)` = e−x is ______.


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Form the differential equation of y = (c1 + c2)ex 


Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex 


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Find the differential equation of the family of all non-horizontal lines in a plane 


Find the differential equation of the curve represented by xy = aex + be–x + x2


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


Form the differential equation of all lines which makes intercept 3 on x-axis.


If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.


The differential equation of all parabolas whose axis is Y-axis, is ______.


The differential equation for a2y = log x + b, is ______.


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Form the differential equation of all concentric circles having centre at the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×