English

Solve the following differential equation: (x2 + y2)dx - 2xy dy = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0

Sum

Solution

(x2 + y2)dx - 2xy dy = 0

∴ 2xy dy = (x2 + y2)dx

∴ `"dy"/"dx" = ("x"^2 + "y"^2)/"2xy"`    ....(1)

Put y = vx

∴ `"dy"/"dx" = "v"+ ("xdv")/"dx"`

∴ (1) becomes, v + x`"dv"/"dx" = ("x"^2 + "v"^2"x"^2)/("2x"("vx"))` 

∴ `"v + x""dv"/"dx" = (1 + "v"^2)/"2v"`

∴ `"x""dv"/"dx" = (1 + "v"^2)/"2v" - "v" = (1 + "v"^2 - 2"v"^2)/"2v"`

∴ `"x""dv"/"dx" = (1 - "v"^2)/"2v"`

∴ `"2v"/(1 - "v"^2)"dv" = 1/"x" "dx"`

Integrating both sides, we get

`int"2v"/(1 - "v"^2)"dv" = int 1/"x" "dx"`

`- int"- 2v"/(1 - "v"^2)"dv" = int 1/"x" "dx"`

∴ - log |1 - v2| = log x + log c1  ....`[because "d"/"dv" (1 - "v"^2) = - 2"v" and  int("f"'("x"))/("f"("x")) "dx" = log |"f"("x")| + "c"]`

∴ `log |1/(1 - "v"^2)| = log "c"_1 "x"`

∴ `log |1/(1 - ("y"^2/"x"^2))| = log "c"_1 "x"`

∴ `log |"x"^2/("x"^2 - "y"^2)| = log "c"_1 "x"`

∴ `"x"^2/("x"^2 - "y"^2) = "c"_1"x"`

∴ `"x"^2 - "y"^2 = 1/"c"_1 "x"`

∴ `"x"^2 - "y"^2 = "cx"`, where c = `1/"c"_1`

This is the general solution.

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.4 [Page 203]

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = Ae5x + Be-5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a + `"a"/"x"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

c1x3 + c2y2 = 5


Find the differential equation of the ellipse whose major axis is twice its minor axis.


Find the differential equation of all circles having radius 9 and centre at point (h, k).


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


Solve the following differential equation:

cos x . cos y dy − sin x . sin y dx = 0


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


For the following differential equation find the particular solution satisfying the given condition:

3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Reduce the following differential equation to the variable separable form and hence solve:

(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Find the particular solution of the following differential equation:

`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1


Find the particular solution of the following differential equation:

y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


Find the differential equation of the family of all non-vertical lines in a plane


Find the differential equation of the family of all non-horizontal lines in a plane 


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis


Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.


Solve the following differential equation:

`xsin(y/x)dy = [ysin(y/x) - x]dx`


The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.


The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


Form the differential equation whose general solution is y = a cos 2x + b sin 2x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×