Advertisements
Advertisements
Question
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.
Options
`e^(x - y) = x + 1`
`e^(x + y) = x + 1`
`e^x + e^y = x + 1`
`e^(y - x) = x - 1`
Solution
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is `underlinebb(e^(x - y) = x + 1)`.
Explanation:
`dy/dx = xe^(y - x)`
∴ `int e^-y dy = intxe^-x dx`
∴ `e^-y = x * e^-x/-1 - int 1 * e^-x/-1 dx + c`
∴ `-e^-y = -xe^-x + e^-x/-1 + c`
∴ `e^-y = x/e^x + 1/e^x - c`
∴ `e^(x - y) = x + 1 - ce^x`
When x = y = 0, we get
1 = 1 – c ∴ c = 0
∴ Particular solution is
`e^(x - y) = x + 1`
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = Ae5x + Be-5x
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = c1e2x + c2e5x
Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.
Form the differential equation of all parabolas whose axis is the X-axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`
Solve the following differential equation:
`log ("dy"/"dx") = 2"x" + 3"y"`
Solve the following differential equation:
`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`
For the following differential equation find the particular solution satisfying the given condition:
`(e^y + 1) cos x + e^y sin x. dy/dx = 0, "when" x = pi/6,` y = 0
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Reduce the following differential equation to the variable separable form and hence solve:
(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.
Choose the correct option from the given alternatives:
x2 + y2 = a2 is a solution of
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = b(x + 4)
Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.
Solve the following differential equation:
x dy = (x + y + 1) dx
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Find the particular solution of the following differential equation:
`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`
Select and write the correct alternative from the given option for the question
The solution of `("d"y)/("d"x)` = 1 is
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Find the differential equation of family of lines making equal intercepts on coordinate axes
Form the differential equation of family of standard circle
Form the differential equation of y = (c1 + c2)ex
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
Find the differential equation of the curve represented by xy = aex + be–x + x2
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
Form the differential equation of all lines which makes intercept 3 on x-axis.
The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.
The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.
The differential equation of all parabolas whose axis is Y-axis, is ______.
The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.
The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.
Solve the differential equation
ex tan y dx + (1 + ex) sec2 y dy = 0