Advertisements
Advertisements
Question
Choose the correct option from the given alternatives:
x2 + y2 = a2 is a solution of
Options
`("d"^2"y")/"dx"^2 + "dy"/"dx" - "y" = 0`
y = x`sqrt(1 + ("dy"/"dx")^2) + "a"^2 "y"`
y = x`"dy"/"dx" + "a" sqrt(1 + ("dy"/"dx")^2)`
`("d"^2"y")/"dx"^2 = ("x + 1")"dy"/"dx"`
Solution
y = x`"dy"/"dx" + "a" sqrt(1 + ("dy"/"dx")^2)`
Hint:
x2 + y2 = a2 ∴ 2x + 2y`"dy"/"dx" = 0`
∴ `"dy"/"dx" = - "x"/"y"`
∴ `"x" "dy"/"dx" + "a" sqrt(1 + ("dy"/"dx")^2)`
`= "x"(- "x"/"y") + "a"sqrt(1 + "x"^2/"y"^2) = - "x"^2/"y" + "a" xx "a"/"y"`
`= ("a"^2 - "x"^2)/"y" = "y"^2/"y" = "y"`
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
Ax2 + By2 = 1
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y2 = (x + c)3
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`"sec"^2 "x" * "tan y" "dx" + "sec"^2 "y" * "tan x" "dy" = 0`
Solve the following differential equation:
`"dy"/"dx" = - "k",` where k is a constant.
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
For the following differential equation find the particular solution satisfying the given condition:
`(e^y + 1) cos x + e^y sin x. dy/dx = 0, "when" x = pi/6,` y = 0
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Choose the correct option from the given alternatives:
The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
Choose the correct option from the given alternatives:
The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
`"y"^2 = "a"("b - x")("b + x")`
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a sin (x + b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Solve the following differential equation:
`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
Find the differential equation of family of lines making equal intercepts on coordinate axes
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Find the differential equation of the family of all non-horizontal lines in a plane
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.
The differential equation for a2y = log x + b, is ______.
A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.