Advertisements
Advertisements
Question
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
Solution
The equation of the family of ellipses having centre at the origin and foci on the y-axis, is given by `x^2/"a"^2 + y^2/"b"^2` = 1 .......(1)
where b > a and a, b are the parameters or a,b are arbitrary constant.
Differentiating equation (1) twice successively, because we have two arbitrary constant, we get
`(2x)/"a"^2 + (2y)/"b"^2 ("d"y)/("d"x)` = 0
`2(x/"a"^2 + y/"b"^2 ("d"y)/("d"x))` = 0
`x/"a"^2 + y/"b"^2 ("d"y)/("d"x)` = 0 .......(2)
Again differentiating equation 2) w.r.t x,
`1/"a"^2 + y/"b"^2 ("d"^2y)/("d"x^2) + ("d"y)/("d"x) ("d"y)/("d"x "b"^2)` = 0
`1/"a"^2 + y/"b"^2 ("d"^2y)/("d"x^2) + (("d"y)/("d"x))^2 1/"b"^2` = 0
Multiply by x
`x/"a"^2 + x/"b"^2 (("d"^2y)/("d"x^2)) + (("d"y)/("d"x))^2 x/"b"^2` = 0 .......(3)
Equation (3) – (2) we get
`x/"a"^2 + (xy)/"b"^2 (("d"^2y)/("d"x^2)) + (("d"y)/("d"x))^2 (x/"b"^2) - (x/"a"^2 + y/"b"^2 ("d"y)/("d"x))` = 0
`(xy)/"b"^2 (("d"^2y)/("d"x^2)) + (("d"y)/("d"x))^2 x/"b"^2 - y/"b"^2 ("d"y)/("d"x)` = 0
Taking `1/"b"^2` outside, we get
`1/"b"^2 [xy ("d"^2y)/("d"x^2) + x(("d"y)/("d"x))^2 - y("d"y)/("d"x)]` = 0
`xy ("d"^2y)/("d"x^2) + x(("d"y)/("d"x))^2 - y("d"y)/("d"x)` = 0 is the required differential equation.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = A cos (log x) + B sin (log x)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a + `"a"/"x"`
Form the differential equation of all parabolas whose axis is the X-axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
In the following example verify that the given function is a solution of the differential equation.
`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`
Solve the following differential equation:
x dy = (x + y + 1) dx
Solve the following differential equation:
`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`
Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex
Find the differential equation of the family of all non-vertical lines in a plane
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.
The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`