Advertisements
Advertisements
प्रश्न
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
उत्तर
The equation of the family of ellipses having centre at the origin and foci on the y-axis, is given by `x^2/"a"^2 + y^2/"b"^2` = 1 .......(1)
where b > a and a, b are the parameters or a,b are arbitrary constant.
Differentiating equation (1) twice successively, because we have two arbitrary constant, we get
`(2x)/"a"^2 + (2y)/"b"^2 ("d"y)/("d"x)` = 0
`2(x/"a"^2 + y/"b"^2 ("d"y)/("d"x))` = 0
`x/"a"^2 + y/"b"^2 ("d"y)/("d"x)` = 0 .......(2)
Again differentiating equation 2) w.r.t x,
`1/"a"^2 + y/"b"^2 ("d"^2y)/("d"x^2) + ("d"y)/("d"x) ("d"y)/("d"x "b"^2)` = 0
`1/"a"^2 + y/"b"^2 ("d"^2y)/("d"x^2) + (("d"y)/("d"x))^2 1/"b"^2` = 0
Multiply by x
`x/"a"^2 + x/"b"^2 (("d"^2y)/("d"x^2)) + (("d"y)/("d"x))^2 x/"b"^2` = 0 .......(3)
Equation (3) – (2) we get
`x/"a"^2 + (xy)/"b"^2 (("d"^2y)/("d"x^2)) + (("d"y)/("d"x))^2 (x/"b"^2) - (x/"a"^2 + y/"b"^2 ("d"y)/("d"x))` = 0
`(xy)/"b"^2 (("d"^2y)/("d"x^2)) + (("d"y)/("d"x))^2 x/"b"^2 - y/"b"^2 ("d"y)/("d"x)` = 0
Taking `1/"b"^2` outside, we get
`1/"b"^2 [xy ("d"^2y)/("d"x^2) + x(("d"y)/("d"x))^2 - y("d"y)/("d"x)]` = 0
`xy ("d"^2y)/("d"x^2) + x(("d"y)/("d"x))^2 - y("d"y)/("d"x)` = 0 is the required differential equation.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Find the particular solution of the following differential equation:
`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Select and write the correct alternative from the given option for the question
The solution of `("d"y)/("d"x)` = 1 is
Form the differential equation of y = (c1 + c2)ex
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.
The differential equation of all parabolas whose axis is Y-axis, is ______.
The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.