Advertisements
Advertisements
प्रश्न
Find the particular solution of the following differential equation:
`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1
उत्तर
`("x + 2y"^2) "dy"/"dx" = "y"`
∴ `"dy"/"dx" = ("x + 2y"^2)/"y" = "x"/"y" + "2y"`
∴ `"dx"/"dy" - 1/"y" * "x" = "2y"` ....(1)
This is the linear differential equation of the form
`"dx"/"dy" + "Px" = "Q"` where P = `- 1/"y"` and Q = 2y.
∴ I.F. = `"e"^(int "P dy") = "e"^(int - 1/"y" "dy")`
`= "e"^(- log "y") = "e"^(log (1/"y")) = 1/"y"`
∴ the solution of (1) is given by
`"x" * ("I.F.") = int "Q" * ("I.F.") "dy" + "c"`
∴ `"x" xx 1/"y" = int "2y" xx 1/"y" "dy" + "c"`
∴ `"x"/"y" = 2 int 1 "dy" + "c"`
∴ `"x"/"y" = 2"y" + "c"`
∴ x = 2y2 + cy
This is the general solution.
When x = 2, y = 1, we have
2 = 2(1)2 + c(1)
∴ c = 0
∴the particular solution is x = 2y2.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a + `"a"/"x"`
Find the differential equation of all circles having radius 9 and centre at point (h, k).
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
For the following differential equation find the particular solution satisfying the given condition:
`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`
Reduce the following differential equation to the variable separable form and hence solve:
`"dy"/"dx" = cos("x + y")`
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
Choose the correct option from the given alternatives:
The solution of `("x + y")^2 "dy"/"dx" = 1` is
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
In the following example verify that the given function is a solution of the differential equation.
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = b(x + 4)
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Solve the following differential equation:
`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Select and write the correct alternative from the given option for the question
The solution of `("d"y)/("d"x)` = 1 is
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Find the differential equation of family of lines making equal intercepts on coordinate axes
Form the differential equation of family of standard circle
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Find the differential equation of the family of all non-horizontal lines in a plane
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?
The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
The differential equation whose solution is (x – h)2 + (y – k)2 = a2 is (where a is a constant) ______.
The differential equation of all parabolas whose axis is Y-axis, is ______.
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.
Form the differential equation of all concentric circles having centre at the origin.