Advertisements
Advertisements
प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a + `"a"/"x"`
उत्तर
y = a + `"a"/"x"` ....(1)
Differentiating twice w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"("a" + "a"/"x") = 0 + "a"(- 1/"x"^2)`
∴ `"dy"/"dx" = - "a"/"x"^2`
∴ `"a" = - "x"^2 "dy"/"dx"`
Substituting the value of a in (1), we get
y = - `"x"^2 "dy"/"dx" + 1/"x"(- "x"^2 "dy"/"dx")`
∴ y = -`"x"^2 "dy"/"dx" - "x" "dy"/"dx"`
∴ `("x"^2 + "x") "dy"/"dx" + "y" = 0`
∴ x(x + 1) `"dy"/"dx" + "y" = 0`
This is the required D.E.
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`
Solve the following differential equation:
`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Solve the following differential equation:
`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
The general solution of `(dy)/(dx)` = e−x is ______.
Form the differential equation of y = (c1 + c2)ex
Find the differential equation from the relation x2 + 4y2 = 4b2
Find the differential equation of the family of all non-vertical lines in a plane
Find the differential equation of the family of all non-horizontal lines in a plane
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
Find the differential equation of the curve represented by xy = aex + be–x + x2
The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
If m and n are respectively the order and degree of the differential equation of the family of parabolas with focus at the origin and X-axis as its axis, then mn - m + n = ______.
Form the differential equation of all lines which makes intercept 3 on x-axis.
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.
The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.