Advertisements
Advertisements
प्रश्न
Find the differential equation from the relation x2 + 4y2 = 4b2
उत्तर
x2 + 4y2 = 4b2 ......(i)
Here, b is an arbitrary constant.
Differentiating w.r.t. x, we get
`2x + 4(2y ("d"y)/("d"x))` = 0
∴ `x + 4y ("d"y)/("d"x)` = 0
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = A cos (log x) + B sin (log x)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y2 = (x + c)3
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = Ae5x + Be-5x
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a + `"a"/"x"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.
Form the differential equation of all parabolas whose axis is the X-axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
Solve the following differential equation:
`"sec"^2 "x" * "tan y" "dx" + "sec"^2 "y" * "tan x" "dy" = 0`
Solve the following differential equation:
`"y"^3 - "dy"/"dx" = "x"^2 "dy"/"dx"`
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Reduce the following differential equation to the variable separable form and hence solve:
`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`
Choose the correct option from the given alternatives:
x2 + y2 = a2 is a solution of
Choose the correct option from the given alternatives:
The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Select and write the correct alternative from the given option for the question
General solution of `y - x ("d"y)/("d"x)` = 0 is
Find the differential equation of family of lines making equal intercepts on coordinate axes
Form the differential equation of family of standard circle
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.
The differential equation of all parabolas whose axis is Y-axis, is ______.
The differential equation for a2y = log x + b, is ______.
Solve the differential equation
ex tan y dx + (1 + ex) sec2 y dy = 0
Form the differential equation of all concentric circles having centre at the origin.