Advertisements
Advertisements
प्रश्न
Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex
उत्तर
y = (c1 + c2x)ex ......(i)
Here, c1 and c2 are arbitrary constants.
Differentiating w.r.t. x, we get
`("d"y)/("d"x)` = (c1 + c2x)ex + c2ex
∴ `("d"y)/("d"x)` = y + c2ex ......(ii) .......[From(i)]
Again, differentiating w.r.t. x, we get
`("d"^2y)/("d"x^2) = ("d"y)/("d"x) + "c"_2"e"^x`
∴ c2ex = `("d"^2y)/("d"x^2) - ("d"y)/("d"x)` .....(iii)
Substituting (iii) in (ii), we get
`("d"y)/("d"x) = y + ("d"^2y)/("d"x^2) - ("d"y)/("d"x)`
∴ `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = Ae5x + Be-5x
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a + `"a"/"x"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = c1e2x + c2e5x
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Reduce the following differential equation to the variable separable form and hence solve:
`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`
Choose the correct option from the given alternatives:
The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is
In the following example verify that the given function is a solution of the differential equation.
`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`
In the following example verify that the given function is a solution of the differential equation.
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be –8x, where A and B are arbitrary constants
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
Form the differential equation of all lines which makes intercept 3 on x-axis.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.
The differential equation of all parabolas whose axis is Y-axis, is ______.
The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.
Solve the differential equation
cos2(x – 2y) = `1 - 2dy/dx`
If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.
A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.