Advertisements
Advertisements
प्रश्न
In the following example verify that the given function is a solution of the differential equation.
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
उत्तर
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2`
∴ `"xy" - "x"^2 = "ae"^"x" + "be"^-"x"` ....(1)
Differentiating both sides w.r.t. x, we get
`"x" "dy"/"dx" + "y" * "d"/"dx" ("x") - "2x" = "ae"^"x" + "be"^-"x" xx (- 1)`
∴ `"x" "dy"/"dx" + "y" - 2"x" = "ae"^"x" - "be"^-"x"`
Differentiating again w.r.t. x, we get
`"x" * "d"/"dx" ("dy"/"dx") + "dy"/"dx" * "d"/"dx" ("x") + "dy"/"dx" - 2 xx 1 = "ae"^"x" - "be"^-"x" (- 1)`
∴ `"x" ("d"^2"y")/"dx"^2 + "dy"/"dx" xx 1 + "dy"/"dx" - 2 = "ae"^"x" + "be"^-"x"`
∴ `"x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" - 2 = "xy" - "x"^2` ....[By (1)]
∴ `"x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
Hence, xy = `"ae"^"x" - "be"^-"x" + "x"^2` is a solution of the D.E.
`"x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
Ax2 + By2 = 1
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = Ae5x + Be-5x
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a + `"a"/"x"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.
Find the differential equation of all circles having radius 9 and centre at point (h, k).
Form the differential equation of all parabolas whose axis is the X-axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
For the following differential equation find the particular solution satisfying the given condition:
`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Reduce the following differential equation to the variable separable form and hence solve:
`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
Choose the correct option from the given alternatives:
The solution of `("x + y")^2 "dy"/"dx" = 1` is
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is
The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
`"y"^2 = "a"("b - x")("b + x")`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.
Find the particular solution of the following differential equation:
`("x + 2y"^2) "dy"/"dx" = "y",` when x = 2, y = 1
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Find the differential equation of family of lines making equal intercepts on coordinate axes
Form the differential equation of family of standard circle
Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax
Find the differential equation from the relation x2 + 4y2 = 4b2
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?
If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.
The differential equation of all parabolas whose axis is Y-axis, is ______.
The differential equation for a2y = log x + b, is ______.
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.
A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.